Frictional Pressure Drop of Gas-Newtonian and Gas-Non Newtonian Slug Flow in Vertical Pipe

Author(s):  
Subrata Kumar Majumder ◽  
Sandip Ghosh ◽  
Gautam Kundu ◽  
Arun Kumar Mitra

Experimental study on two-phase pressure drop in a vertical pipe with air-Newtonian and non-Newtonian liquid in slug flow regime has been carried out within a range of gas and liquid flowrate of 0.5×10-4 to 1.92×10-4 m-3/s and 1.6×10-4 to 6.7×10-4 m3/s respectively. In the present study air and four types of liquids such as water, amyl alcohol, glycerin (two different concentrations), and CMC (Sodium Carboxymethyl Cellulose) are used. The present data were analyzed by two-phase friction method. To predict the two-phase pressure drop, correlations have been developed with Newtonian and non-Newtonian liquid. A general correlation was also developed to predict the two-phase pressure drop in a vertical column of diameter 0.01905 m and 3.4 m height combining both the Newtonian and non-Newtonian liquid systems.

Author(s):  
Subrata Kumar Majumder ◽  
Sandip Ghosh ◽  
Arun Kumar Mitra ◽  
Gautam Kundu

Studies on two-phase gas-liquid co-current flow with non-Newtonian liquid system has attracted the attention of researchers over the years due to its wide-spread applications and importance in various different processes in chemical and biochemical industries, such as the process of two-phase in oil and gas wells, transportation systems of crude and refined products, and food processing in biochemical engineering and bio-reactors. This article examines the sole objective of experimental studies on gas holdup in Newtonian and non-Newtonian liquid slug flow within a range of gas and liquid flowrate of 0.5×10-4 to 1.92×10-4 m3/s and 1.6×10-4 to 6.7×10-4 m3/s, respectively. The present data was analyzed with different models. To predict gas holdup, correlations have been developed for individual system with Newtonian and non-Newtonian liquid. A general correlation was also developed to predict the gas holdup combing both the Newtonian and non-Newtonian liquid systems. The study of the gas holdup characteristics in gas-Newtonian and non-Newtonian liquid systems may give insight into a further understanding and modeling of this slug flow characteristics in industrial applications.


Author(s):  
Yuqing Xue ◽  
Huixiong Li ◽  
Tianyou Sheng ◽  
Changjiang Liao

A large amount of air need be transported into the reservoir in the deep stratum to supply oxygen to some microbes in Microbial Enhanced Oil Recovery (MEOR). Air-water two-phase flows downward along vertical pipeline during the air transportation. Base on the experiment data described in this paper, the characteristics of air-water two phase flow patterns were investigated. The flow pattern map of air-water two phase flows in the pipe with inner diameter of 65 mm was drawn, criterions of flow pattern transition were discussed, and the dynamic signals of the pressure and the differential pressure of the two phase flow were recorded to characterize the three basic flow regimes indirectly. The frictional pressure drop of downward flow in vertical pipe must not be disregarded contrast with upward two phase flow in the vertical pipe because the buoyancy must be overcame when the gas flows downward along pipe, and there would be a maximum value of frictional when the flow pattern translated from slug flow to churn flow.


2014 ◽  
Vol 917 ◽  
pp. 244-256 ◽  
Author(s):  
Nirjhar Bar ◽  
Sudip Kumar Das

This paper is an attempt to compare the the performance of the three different Multilayer Perceptron training algorithms namely Backpropagation, Scaled Conjugate Gradient and Levenberg-Marquardt for the prediction of the gas hold up and frictional pressure drop across the vertical pipe for gas non-Newtonian liquid flow from our earlier experimental data. The Multilayer Perceptron consists of a single hidden layer. Four different transfer functions were used in the hidden layer. All three algorithms were useful to predict the gas holdup and frictional pressure drop across the vertical pipe. Statistical analysis using Chi-square test (χ2) confirms that the Backpropagation training algorithm gives the best predictability for both cases.


1961 ◽  
Vol 83 (4) ◽  
pp. 613-618 ◽  
Author(s):  
E. S. Kordyban

The paper presents a construction of a simplified model approximating the actual observed flow pattern. The resulting expressions for frictional pressure drop are found to agree fairly well with the author’s data for steam and water and the data for air and water of other investigators. The similarity with a portion of the Chenoweth-Martin correlation appears to present a logical explanation for the applicability of that correlation to slug flow.


Author(s):  
R. Yun ◽  
Y. Kim

Two-phase pressure drops of CO2 are investigated in mini tubes with inner diameters of 2.0 and 0.98 mm and in microchannels with hydraulic diameters from 1.08 to 1.54 mm. For the mini tubes, the tests were conducted with a variation of mass flux from 500 to 3570 kg/m2s, heat flux from 7 to 48 kW/m2, while maintaining saturation temperatures at 0°C, 5°C and 10°C. For the microchannels, mass flux was varied from 100 to 400 kg/m2s, and heat flux was altered from 5 to 20 kW/m2. A direct heating method was used to provide heat into the refrigerants. The pressure drop of CO2 in mini tubes shows very similar trends with that in large diameter tubes. Although the microchannel has a small hydraulic diameter, two-phase effects on frictional pressure drop are significant. The Chisholm parameter of the Lockhart and Martinelli correlation is modified by considering diameter effects on the two-phase frictional multiplier.


2017 ◽  
Vol 83 (847) ◽  
pp. 16-00386-16-00386
Author(s):  
Akimaro KAWAHARA ◽  
Akifumi MORI ◽  
Wen Zhe LAW ◽  
Yukihiro YONEMOTO ◽  
Mohamed H. MANSOUR ◽  
...  

Author(s):  
M. Hamayun Maqbool ◽  
Bjo¨rn Palm ◽  
R. Khodabandeh ◽  
Rashid Ali

Experiments have been performed to investigate two-phase pressure drop in a circular vertical mini-channel made of stainless steel (AISI 316) with internal diameter of 1.70 mm and a uniformly heated length of 245 mm using ammonia as working fluid. The experiments are conducted for heat flux range of 15 to 350 kW/m2 and mass flux range of 100 to 500 kg/m2s. A uniform heat flux is applied to the test section by DC power supply. Two phase frictional pressure drop variation with mass flux, vapour quality and heat flux was determined. The experimental results are compared to predictive methods available in literature for frictional pressure drop. The Homogeneous model and the correlation of Mu¨ller Steinhagen et al. [14] are in good agreement with our experimental data with MAD of 27% and 26% respectively.


Sign in / Sign up

Export Citation Format

Share Document