Adaptive Fuzzy PI-Sliding Mode Controller for Induction Motor Speed Control

Author(s):  
Abdeldjebar Hazzab ◽  
Bousserhane Ismail Khalil ◽  
Mokhtar Kamli ◽  
Mostefa Rahli

In this paper, an adaptive fuzzy PI-sliding mode control (AFPISMC) is proposed for induction motor (IM) speed control. First, an adaptive sliding-mode controller (APISMC) with a proportional plus integral equivalent control action is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameters. The proposed control design uses the fuzzy logic techniques to dynamically control parameter settings of the SMC equivalent control action. The theoretical analyses for the proposed fuzzy PI-sliding-mode controller are described in detail. Simulated results show that the proposed controller provides high-performance dynamic characteristics and is robust with regard to plant parameter variations and external load disturbance.

2012 ◽  
Vol 190-191 ◽  
pp. 880-885
Author(s):  
Lu Cao ◽  
Xiao Qian Chen ◽  
Yong Zhao

Attitude Control System(ACS); Terminal; Adaptive; Integral operator Abstract: Attitude Control System (ACS) with high performance, high precision, and high reliability is the kernel technology of the research of spacecraft, which directly affects the whole performance of spacecraft. Hence, a global fast integral operator Terminal adaptive sliding-mode controller is proposed to come true the high performance control. The theory of this controller is to introduce the limited time mechanics—Terminal mode to the sliding-mode control and introduce the integral operator to the sliding-mode plane, which can realize the convergence of spacecraft attitude in “limited time” in the condition of serious disturbance , in order to enhance the performance of fast response. At last, the simulation results demonstrate the high reliability and advantages of the control approach.


2021 ◽  
Vol 3 (3) ◽  
pp. 10-19
Author(s):  
Samar Abdulkareem AL-Hashemi ◽  
Ayad AL-Dujaili ◽  
Ahmed R. Ajel

Induction motors are widely used in commercial and industrial applications due to their robustness, high efficiency, low maintenance requirements and durability among other reasons. Consequently, their speed should be controlled for better performance. This paper describes utilization of a scalar speed control of a three-phase squirrel cage induction motor (SCIM) to control a motor’s speed using an integral sliding mode controller (ISMC). The controller was tested under various operating conditions. The results are compared with a case employing a conventional PI controller. It was found that speed control by ISMC has a 0.16 RPM steady-state error, 0.03 s to reach steady-state from a standstill, and a 5% overshoot. All of these are lower values as compared to the results of a conventional PI controller. In this paper, the robustness of each controller to uncertainties is checked. Simulation results show the advantages of ISMC control methods. The system is simulated using MATLAB SIMULINK R2017a.


Sign in / Sign up

Export Citation Format

Share Document