scholarly journals DESIGN FORMULA FOR LATERAL TORSIONAL BUCKLING OF ROLLED I AND H STEEL BEAMS

1977 ◽  
Vol 1977 (267) ◽  
pp. 1-8
Author(s):  
Yasuyuki AOSHIMA
Author(s):  
Vera V Galishnikova ◽  
Tesfaldet H Gebre

Introduction. Structural stability is an essential part of design process for steel structures and checking the overall stability is very important for the determination of the optimum steel beams section. Lateral torsional buckling (LTB) normally associated with beams subject to vertical loading, buckling out of the plane of the applied loads and it is a primary consideration in the design of steel structures, consequently it may reduce the load currying capacity. Methods. There are several national codes to verify the steel beam against LTB. All specifications have different approach for the treatment of LTB and this paper is concentrated on three different methods: America Institute of Steel Construction (AISC), Eurocode (EC) and Russian Code (SP). The attention is focused to the methods of developing LTB curves and their characteristics. Results. AISC specification identifies three regimes of buckling depending on the unbraced length of the member ( Lb ). However, EC and SP utilize a reduction factor (χ LT ) to treat lateral torsional buckling problem. In general, flexural capacities according to AISC are higher than those of EC and SP for non-compact sections.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 1143-1151
Author(s):  
Harald Unterweger ◽  
Markus Kettler ◽  
Sarah Loschan

2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Wen-Fu Zhang ◽  
Ying-Chun Liu ◽  
Ke-Shan Chen ◽  
Yun Deng

Even for the doubly symmetric I-beams under linear distributed moment, the design formulas given by codes of different countries are quite different. This paper will derive a dimensionless analytical solution via linear stability theory and propose a new design formula of the critical moment of the lateral-torsional buckling (LTB) of the simply supported I-beams under linear distributed moment. Firstly, the assumptions of linear stability theory are reviewed, the dispute concerning the LTB energy equation is introduced, and then the thinking of Plate-Beam Theory, which can be used to fully resolve the challenge presented by Ojalvo, is presented briefly; secondly, by introducing the new dimensionless coefficient of lateral deflection, the new dimensionless critical moment and Wagner’s coefficient are derived naturally from the total potential energy. With these independent parameters, the new dimensionless analytical buckling equation is obtained; thirdly, the convergence performance of the dimensionless analytical solution is discussed by numerical solutions and its correctness is verified by the numerical results given by ANSYS; finally, a new trilinear mathematical model is proposed as the benchmark of formulating the design formula and, with the help of 1stOpt software, the four coefficients used in the proposed dimensionless design formula are determined.


Sign in / Sign up

Export Citation Format

Share Document