scholarly journals Numerical Study of Cold-Formed Steel Beams Subject to Lateral-Torsional Buckling

Author(s):  
N. Dolamune Kankanamge ◽  
M. Mahendran
Author(s):  
Nuno Lopes ◽  
Pedro Gamelas ◽  
Paulo Vila Real

For predicting the behaviour of beams with thin-walled I sections, named Class 4 in Eurocode 3 (EC3), it is necessary to account for the occurrence of both local and lateral torsional buckling (LTB). These instability phenomena, which are intensified at elevated temperatures, should be accurately considered in design rules. The fire design guidelines for stainless steel members, given in Part 1-2 of EC3, propose the use of the same formulae developed for carbon steel (CS) elements. However, these two materials have different constitutive laws, leading to believe that the use of those formulae should be validated. This work presents a parametric numerical study on the behaviour of stainless steel beams with Class 4 I sections at elevated temperatures. The influences of several parameters such as stainless steel grade, loading type and cross section slenderness are evaluated, and comparisons between the obtained numerical results and EC3 rules are presented.


2018 ◽  
Vol 18 (07) ◽  
pp. 1850090 ◽  
Author(s):  
Y. L. Xu ◽  
Y. J. Shi ◽  
Y. R. Wu ◽  
H. Y. Ban

A new type of high performance steel (HPS), designated WGJ steel, with high strength as well as improved fire and corrosion resistance, was recently developed by Wuhan Iron and Steel (Group) Company. This paper investigated the lateral-torsional buckling behavior of beams fabricated of WGJ steel through experimental and numerical analysis. Welded I-section beams were tested under concentrated loads, which indicated that lateral-torsional buckling was the dominant failure mode. A finite element model was established and validated by the experimental results. Parametric analyses were conducted to further understand the effect of steel strength on the lateral-torsional buckling capacity of steel beams. The numerical results were compared with design values obtained from the clauses in Eurocode 3 and GB50017. It is found that the design equations in GB50017 give less safe margins for the overall stability design of welded I-section beams fabricated of WGJ high performance steel, whereas Eurocode 3 appears to be more conservative in all conditions.


Author(s):  
Vera V Galishnikova ◽  
Tesfaldet H Gebre

Introduction. Structural stability is an essential part of design process for steel structures and checking the overall stability is very important for the determination of the optimum steel beams section. Lateral torsional buckling (LTB) normally associated with beams subject to vertical loading, buckling out of the plane of the applied loads and it is a primary consideration in the design of steel structures, consequently it may reduce the load currying capacity. Methods. There are several national codes to verify the steel beam against LTB. All specifications have different approach for the treatment of LTB and this paper is concentrated on three different methods: America Institute of Steel Construction (AISC), Eurocode (EC) and Russian Code (SP). The attention is focused to the methods of developing LTB curves and their characteristics. Results. AISC specification identifies three regimes of buckling depending on the unbraced length of the member ( Lb ). However, EC and SP utilize a reduction factor (χ LT ) to treat lateral torsional buckling problem. In general, flexural capacities according to AISC are higher than those of EC and SP for non-compact sections.


Sign in / Sign up

Export Citation Format

Share Document