scholarly journals DEM-MPS model of solid-flow interaction for simulating behavior of armor blocks

2008 ◽  
Vol 55 ◽  
pp. 836-840 ◽  
Author(s):  
Hitoshi GOTOH ◽  
Hiroyuki IKARI ◽  
Tsunehito YASUOKA ◽  
Kensuke OKU
Keyword(s):  
2020 ◽  
Vol 39 (1) ◽  
pp. 447-456
Author(s):  
Zhenlong An ◽  
Jingbin Wang ◽  
Yanjun Liu ◽  
Yingli Liu ◽  
Xuefeng She ◽  
...  

AbstractThe top gas recycling-oxygen blast furnace (TGR-OBF) is a reasonable method used to reduce both coke rate and energy consumption in the steel industry. An important feature of this process is shaft gas injection. This article presents an experimental study on the gas–solid flow characteristics in a TGR-OBF using a two-dimensional cold model. The experimental conditions and parameters were determined using a series of similarity criteria. The results showed that the whole flow area in the TGR-OBF can be divided into four distinct flow zones, namely, the stagnant zone, the plug flow zone in the upper part of the shaft, the converging flow zone and the quasi-stagnant flow zone, which is similar to that in a traditional blast furnace. Then the effects of batch weight and the ratio (X) of the shaft injected gas flow rate to the total gas flow rate on solid flow behaviour were investigated in detail. With the increase in batch weight, the shape of the stagnant zone tends to be shorter and thicker. Furthermore, with the increase in X value from 0 to 1, the stagnant zone gradually becomes thinner and higher. The results obtained from the experiments provide fundamental data and a validation for the discrete element method–computational fluid dynamics-coupled mathematical model for TGR-OBFs for future studies.


Author(s):  
Heng Zhou ◽  
Shuyu Wang ◽  
Binbin Du ◽  
Mingyin Kou ◽  
Zhiyong Tang ◽  
...  

AbstractIn order to develop the central gas flow in COREX shaft furnace, a new installment of center gas supply device (CGD) is designed. In this work, a coupled DEM–CFD model was employed to study the influence of CGD on gas–solid flow in COREX shaft furnace. The particle descending velocity, particle segregation behaviour, void distribution and gas distribution were investigated. The results show that the CGD affects the particles descending velocity remarkably as the burden falling down to the slot. Particle segregation can be observed under the inverse ‘V’ burden profile, and the influence of CGD on the particle segregation is unobvious on the whole, which causes the result that the voidage is slightly changed. Although the effect of CGD on solid flow is not significant, the gas flow in shaft furnace has an obvious change. Compared with the condition without CGD, in the case with CGD, the gas velocity is improved significantly, especially in the middle zone of the furnace, which further promotes the center gas distribution. Meanwhile, the pressure drop in the furnace with the installation of CGD is increased partly.


2019 ◽  
Vol 158 ◽  
pp. 5245-5250
Author(s):  
Yu Wang ◽  
Rongtang Liu ◽  
Ming Liu ◽  
Junjie Yan

Sign in / Sign up

Export Citation Format

Share Document