scholarly journals Synthesis of Mn(II)-Loaded TixSi1-xO4 Composite Acting as a Visible-Light Driven Photocatalyst

2015 ◽  
Vol 15 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Misriyani Misriyani ◽  
Eko Sri Kunarti ◽  
Masahide Yasuda

The synthesis and characterization of Mn-loaded TixSi1-xO4 (x= 0.4-0.8) composites and a preliminary study of an activity testing their ability to work as photocatalysts for the degradation of methylene blue (MB) have been studied. Synthesis was conducted by the sol-gel method at room temperature using tetraethyl orthosilicate, titanium tetraisopropoxide, and manganese(II) chloride as precursors followed by thermal treatment at 500 °C. The characterizations were performed by X-ray diffraction, FT-IR spectrometry, UV-Vis diffuse reflectance spectrometry and a surface area analyzer. The photocatalytic activity test of composites for degradation of MB was carried out in a closed reactor equipped with UV and visible lights. In this test, the effects of ratio of Ti/Si composites, Mn2+ ion concentration, pH, and time of irradiation on the effectiveness of photodegradation of MB were studied. The results indicated that Mn-Ti0.6Si0.4O4 composite could be synthesized through the sol-gel method followed by thermal treatment with a molar ratio of Ti/Si=60/40 and the optimum concentration of manganese was 2.5 wt%. The Mn-Ti0.6Si0.4O4 composite significantly increased the photodegradation of MB at pH 10, with a percent degradation of 84.41% for 30 min under irradiation of visible light. The percent degradation of Ti0.6Si0.4O4 was only 18.23% under irradiation of visible light.

Author(s):  
Perica Paunović ◽  
Anita Grozdanov ◽  
Andrej Češnovar ◽  
Petre Makreski ◽  
Gennaro Gentile ◽  
...  

This work is concerned with development of sol–gel method for preparation of nanoscaled TiO2 using organometallic precursor—titanium tetraisopropoxide (TTIP) and determination of the present crystalline phases depending on the temperature of further thermal treatment. The characteristic processes and transformations during the thermal treatment were determined by means of thermal gravimetric analysis and/or differential thermal analysis (TGA/DTA) method. The crystalline structure and size of the TiO2 crystallites were analyzed by means of Raman spectroscopy and X-ray powder diffraction (XRPD) method. At 250 °C, cryptocrystalline structure was detected, where amorphous TiO2 is accompanied with crystalline anatase. The anatase crystallite phase is stable up to 650 °C, whereas at higher temperature rutile transformation begins. It was observed that at 800 °C, almost the whole TiO2 is transformed to rutile phase. According to XRPD analysis, the increase of the temperature influences on the increase of the size of the crystalline particles ranging from 6 nm at 250 °C to less than 100 nm at 800 °C. The size and shape of the TiO2 crystalline particles were observed by transmission electron microscopy (TEM). The shape of the studied samples changes from nanospheres (250, 380, and 550 °C) to nanorods (650 and 800 °C). Morphology of the formed TiO2 aggregates was observed by scanning electron microscopy (SEM).


2019 ◽  
Vol 2 (01) ◽  
pp. 10-12
Author(s):  
Linda J Kusumawardani ◽  
Yulian Syahputri

In this study, Fe/TiO2 powder was synthesized by sol-gel method using mixture of Titanium Tetraisopropoxide (TTIP) as precursor and FeCl3 as iron source of 10% (w/w). The Fe/TiO2 powder was calcined at 500 °C for 1 hour. The sample of Fe/TiO2 was characterized using FTIR anad DRS measurements. FTIR analysis showed that Fe was successfully doped on TiO2 and then DRS analysis proved that the visible light was absorbed by Fe/TiO2 with its band gap energy up to 2.3 eV


Sign in / Sign up

Export Citation Format

Share Document