scholarly journals Leap Zagreb Connection Numbers for Some Networks Models

2020 ◽  
Vol 20 (6) ◽  
pp. 1407 ◽  
Author(s):  
Zahid Raza

The main object of this study is to determine the exact values of the topological indices which play a vital role in studying chemical information, structure properties like QSAR and QSPR. The first Zagreb index and second Zagreb index are among the most studied topological indices. We now consider analogous graph invariants, based on the second degrees of vertices, called leap Zagreb indices. We compute these indices for Tickysim SpiNNaker model, cyclic octahedral structure, Aztec diamond and extended Aztec diamond.

Author(s):  
Jibonjyoti Buragohain ◽  
A. Bharali

The Zagreb indices are the oldest among all degree-based topological indices. For a connected graph G, the first Zagreb index M1(G) is the sum of the term dG(u)+dG(v) corresponding to each edge uv in G, that is, M1 , where dG(u) is degree of the vertex u in G. In this chapter, the authors propose a weighted first Zagreb index and calculate its values for some standard graphs. Also, the authors study its correlations with various physico-chemical properties of octane isomers. It is found that this novel index has strong correlation with acentric factor and entropy of octane isomers as compared to other existing topological indices.


Author(s):  
Abdu Qaid Saif Alameri ◽  
Mohammed Saad Yahya Al-Sharafi

A chemical graph theory is a fascinating branch of graph theory which has many applications related to chemistry. A topological index is a real number related to a graph, as its considered a structural invariant. It’s found that there is a strong correlation between the properties of chemical compounds and their topological indices. In this paper, we introduce some new graph operations for the first Zagreb index, second Zagreb index and forgotten index "F-index". Furthermore, it was found some possible applications on some new graph operations such as roperties of molecular graphs that resulted by alkanes or cyclic alkanes.


2019 ◽  
Vol 27 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Nisar Fatima ◽  
Akhlaq Ahmad Bhatti ◽  
Akbar Ali ◽  
Wei Gao

Abstract It is well known fact that several physicochemical properties of chemical compounds are closely related to their molecular structure. Mathematical chemistry provides a method to predict the aforementioned properties of compounds using topological indices. The Zagreb indices are among the most studied topological indices. Recently, three modified versions of the Zagreb indices were proposed independently in [Ali, A.; Trinajstić, N. A novel/old modification of the first Zagreb index, arXiv:1705.10430 [math.CO] 2017; Mol. Inform. 2018, 37, 1800008] and [Naji, A. M.; Soner, N. D.; Gutman, I. On leap Zagreb indices of graphs, Commun. Comb. Optim. 2017, 2, 99–117], which were named as the Zagreb connection indices and the leap Zagreb indices, respectively. In this paper, we check the chemical applicability of the newly considered Zagreb connection indices on the set of octane isomers and establish general expressions for calculating these indices of two well-known dendrimer nanostars.


2018 ◽  
Vol 26 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Saba Manzoor ◽  
Nisar Fatima ◽  
Akhlaq Ahmad Bhatti ◽  
Akbar Ali

Abstract The first Zagreb index (occurred in an approximate formula of total π-electron energy, communicated in 1972) and the second Zagreb index (appeared in 1975, within the study of molecular branching) are among the most studied topological indices. Recently, three modified versions of the Zagreb indices were proposed independently in [A. Ali, N. Trinajstić, A novel/old modification of the first Zagreb index, arXiv:1705.10430 [math.CO], 2017] and [A. M. Naji, N. D. Soner, I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim., 2017, 2, 99–117], which were named as the Zagreb connection indices and the leap Zagreb indices, respectively. In this paper, we derive formulas for calculating these modified versions of the Zagreb indices of four well known nanostructures.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dong Yun Shin ◽  
Sabir Hussain ◽  
Farkhanda Afzal ◽  
Choonkil Park ◽  
Deeba Afzal ◽  
...  

In this article, we provide new formulas to compute the reduced reciprocal randić index, Arithmetic geometric1 index, SK index, SK1 index, SK2 index, edge version of the first zagreb index, sum connectivity index, general sum connectivity index, and the forgotten index using the M-polynomial and finding these topological indices for a boron triangular nanotube. We also elaborate the results with graphical representations.


2014 ◽  
Vol 45 ◽  
pp. 147-151 ◽  
Author(s):  
Hossein Shabani ◽  
Reza Kahkeshani

2018 ◽  
Vol 34 (4) ◽  
pp. 1842-1846
Author(s):  
Anjusha Asok ◽  
Joseph Varghese Kureethara

The QSPR analysis provides a significant structural insight into the physiochemical properties of Butane derivatives. We study some physiochemical properties of fourteen Butane derivatives and develop a QSPR model using four topological indices and Butane derivatives. Here we analyze how closely the topological indices are related to the physiochemical properties of Butane derivatives. For this we compute analytically the topological indices of Butane derivatives and plot the graphs between each of these topological indices to the properties of Butane derivatives using Origin. This QSPR model exhibits a close correlation between Heavy atomic count, Complexity, Hydrogen bond acceptor count, and Surface tension of Butane derivatives with the Redefined first Zagreb index, the Redefined third Zagreb index, the Sum connectivity index and the Reformulated first Zagreb index, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Xiujun Zhang ◽  
H. M. Awais ◽  
M. Javaid ◽  
Muhammad Kamran Siddiqui

Mathematical modeling with the help of numerical coding of graphs has been used in the different fields of science, especially in chemistry for the studies of the molecular structures. It also plays a vital role in the study of the quantitative structure activities relationship (QSAR) and quantitative structure properties relationship (QSPR) models. Todeshine et al. (2010) and Eliasi et al. (2012) defined two different versions of the 1st multiplicative Zagreb index as ∏Γ=∏p∈VΓdΓp2 and ∏1Γ=∏pq∈EΓdΓp+dΓq, respectively. In the same paper of Todeshine, they also defined the 2nd multiplicative Zagreb index as ∏2Γ=∏pq∈EΓdΓp×dΓq. Recently, Liu et al. [IEEE Access; 7(2019); 105479–-105488] defined the generalized subdivision-related operations of graphs and obtained the generalized F-sum graphs using these operations. They also computed the first and second Zagreb indices of the newly defined generalized F-sum graphs. In this paper, we extend this study and compute the upper bonds of the first multiplicative Zagreb and second multiplicative Zagreb indices of the generalized F-sum graphs. At the end, some particular results as applications of the obtained results for alkane are also included.


2016 ◽  
Vol 24 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Kinkar Ch. Das ◽  
Nihat Akgunes ◽  
Muge Togan ◽  
Aysun Yurttas ◽  
I. Naci Cangul ◽  
...  

AbstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as, where dG(vi) is the degree of vertex vi in G. Recently Xu et al. introduced two graphical invariantsandnamed as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) =. The irregularity index t(G) of G is defined as the number of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M1(G) of graphs and trees in terms of number of vertices, irregularity index, maxi- mum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and Narumi-Katayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.


2018 ◽  
Vol 37 (6-7) ◽  
pp. 1800008 ◽  
Author(s):  
Akbar Ali ◽  
Nenad Trinajstić

Sign in / Sign up

Export Citation Format

Share Document