scholarly journals Transportation Network and Road accident analysis: A case study of Khandwa city

2021 ◽  
Vol 8 (12) ◽  
pp. 159-163
Author(s):  
Apoorva shukla ◽  
Tarun Kumar Narnaure
2016 ◽  
Vol 47 ◽  
pp. 03004
Author(s):  
Mohd Idrus Mohd Masirin ◽  
Walid A. Al-Bargi ◽  
Joewono Prasetijo ◽  
Basil David Daniel

Author(s):  
Jayesh Patil ◽  
Mandar Prabhu ◽  
Dhaval Walavalkar ◽  
Vivian Brian Lobo

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1478
Author(s):  
Penugonda Ravikumar ◽  
Palla Likhitha ◽  
Bathala Venus Vikranth Raj ◽  
Rage Uday Kiran ◽  
Yutaka Watanobe ◽  
...  

Discovering periodic-frequent patterns in temporal databases is a challenging problem of great importance in many real-world applications. Though several algorithms were described in the literature to tackle the problem of periodic-frequent pattern mining, most of these algorithms use the traditional horizontal (or row) database layout, that is, either they need to scan the database several times or do not allow asynchronous computation of periodic-frequent patterns. As a result, this kind of database layout makes the algorithms for discovering periodic-frequent patterns both time and memory inefficient. One cannot ignore the importance of mining the data stored in a vertical (or columnar) database layout. It is because real-world big data is widely stored in columnar database layout. With this motivation, this paper proposes an efficient algorithm, Periodic Frequent-Equivalence CLass Transformation (PF-ECLAT), to find periodic-frequent patterns in a columnar temporal database. Experimental results on sparse and dense real-world and synthetic databases demonstrate that PF-ECLAT is memory and runtime efficient and highly scalable. Finally, we demonstrate the usefulness of PF-ECLAT with two case studies. In the first case study, we have employed our algorithm to identify the geographical areas in which people were periodically exposed to harmful levels of air pollution in Japan. In the second case study, we have utilized our algorithm to discover the set of road segments in which congestion was regularly observed in a transportation network.


Author(s):  
Olasunkanmi Oriola Akinyemi ◽  
Hezekiah O Adeyemi ◽  
Olusegun Jinadu

Abstract Analysis of road traffic accidents revealed that most accidents are as a result of drivers’ errors. Over the years, active safety systems (ASS) were devised in vehicle to reduce the high level of road accidents, caused by human errors, leading to death and injuries. This study however evaluated the impacts of ASS inclusions into vehicles in Nigeria road transportation network. The objectives was to measure how ASS contributed to making driving safer and enhanced transport safety. Road accident data were collected, for a period of eleven years, from Lagos State Ministry of Economic Planning and Budget, Central Office of Statistics. Quantitative analysis of the retrospective accident was conducted by computing the proportion of yearly number of vehicles involved in road accident to the total number of vehicles for each year. Results of the analysis showed that the proportion of vehicles involved in road accidents decreased from 16 in 1996 to 0.89 in 2006, the injured persons reduced from 15.58 in 1998 to 0.3 in 2006 and the death rate diminished from 4.45 in 1998 to 0.1 in 2006. These represented 94.4 %, 95 % and 95 % improvement respectively on road traffic safety. It can therefore be concluded that the inclusions of ASS into design of modern vehicles had improved road safety in Nigeria automotive industry.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Xiaomei Xu ◽  
Zhirui Ye ◽  
Jin Li ◽  
Mingtao Xu

Bicycle-sharing systems (BSSs) have become a prominent feature of the transportation network in many cities. Along with the boom of BSSs, cities face the challenge of bicycle unavailability and dock shortages. It is essential to conduct rebalancing operations, the success of which largely depend on users’ demand prediction. The objective of this study is to develop users’ demand prediction models based on the rental data, which will serve rebalancing operations. First, methods to collect and process the relevant data are presented. Bicycle usage patterns are then examined from both trip-based aspect and station-based aspect to provide some guidance for users’ demand prediction. After that, the methodology combining cluster analysis, a back-propagation neural network (BPNN), and comparative analysis is proposed to predict users’ demand. Cluster analysis is used to identify different service types of stations, the BPNN method is utilized to establish the demand prediction models for different service types of stations, and comparative analysis is employed to determine if the accuracy of the prediction models is improved by making a distinction among stations and working/nonworking days. Finally, a case study is conducted to evaluate the performance of the proposed methodology. Results indicate that making a distinction among stations and working/nonworking days when predicting users’ demand can improve the accuracy of prediction models.


Author(s):  
Patriarca Riccardo ◽  
Del Pinto Gianluca ◽  
Di Gravio Giulio ◽  
Costantino Francesco

Due to the inherent complexity of nowadays Air Traffic Management (ATM) system, standard methods looking at an event as a linear sequence of failures might become inappropriate. For this purpose, adopting a systemic perspective, the Functional Resonance Analysis Method (FRAM) originally developed by Hollnagel, helps in identifying nonlinear combinations of events and interrelationships. This paper aims to enhance the strength of FRAM-based accident analyses, discussing the Resilience Analysis Matrix (RAM), a user-friendly tool that supports the analyst during the analysis, in order to reduce the complexity of representation of FRAM. The RAM offers a two-dimensional representation which systematically highlights the connections among couplings, and thus even the highly connected group of couplings. As an illustrative case study, this paper develops a systemic accident analysis for the runway incursion happened in February 1991 at LAX airport, involving SkyWest Flight 5569 and USAir Flight 1493. FRAM confirms itself a powerful method to characterize the variability of the operational scenario, identifying the dynamic couplings with a critical role during the event and helping in discussing the systemic effects of variability at different level of analysis.


Sign in / Sign up

Export Citation Format

Share Document