scholarly journals Arbuscular mycorrhizal fungi (Glomus mosseae) selection by date palm root system: The clue to a sustainable fertile soil in Jerid region of Tunisia

Author(s):  
B. Zougari-Elwedi ◽  
W. Issami
2020 ◽  
Author(s):  
Helen Maria Cockerton ◽  
Bo Li ◽  
Eleftheria Stavridou ◽  
Abigail Johnson ◽  
Amanda Karlström ◽  
...  

Abstract Background: Phosphate is an essential plant macronutrient required to achieve maximum crop yield. Roots are able to uptake soil phosphate from the immediate root area, thus creating a nutrient depletion zone. Many plants are able to exploit phosphate from beyond this root nutrient depletion zone through symbiotic association with Arbuscular Mycorrhizal Fungi (AMF). Here we characterise the relationship between root architecture, AMF association and low phosphate tolerance in strawberries. The contrasting root architecture in the parental strawberry cultivars ‘Redgauntlet’ and ‘Hapil’ was studied through a mapping population of 168 progeny. Low phosphate tolerance and AMF association was quantified for each genotype to allow assessment of the phenotypic and genotypic relationships between traits. Results: A “phosphate scavenging” root phenotype where individuals exhibit a high proportion of surface lateral roots was associated with a reduction in root system size across genotypes. A genetic correlation between “root system size” traits was observed with a network of pleiotropic QTL were found to represent five “root system size” traits. By contrast, average root diameter and the distribution of roots appeared to be under two discrete methods of genetic control. A total of 18 QTL were associated with plant traits, 4 of which were associated with solidity that explained 46 % of the observed variation. Investigations into the relationship between AMF association and root architecture found that a higher root density was associated with greater AMF colonisation across genotypes. However, no phenotypic correlation or genotypic association was found between low phosphate tolerance and the propensity for AMF association, nor root architectural traits when plants are grown under optimal nutrient conditions.Conclusions: Understanding the genetic relationships underpinning phosphate capture can inform the breeding of strawberry varieties with better nutrient use efficiency. Solid root systems were associated with greater AMF colonisation. However, low P-tolerance was not phenotypically or genotypically associated with root architecture traits in strawberry plants. Furthermore, a trade-off was observed between root system size and root architecture type, highlighting the energetic costs associated with a “phosphate scavenging” root architecture.


2008 ◽  
Vol 5 (3) ◽  
pp. 395-398
Author(s):  
Baghdad Science Journal

Arbuscular mycorrhizal fungi and sulphur foam added either at direct seeding or at transplanting decreased the effects of nematode (Meloidogyne javanica) on eggplant growth, and improved plant health. Experiments were conducted to study the possible interactions between the Mycorrhizal fungi (Glomus mossae and Gigaspora spp.) and sulphur foam to control M. javanica on eggplant at seed or seedling stage. Experiment at seed stage treated with Mycorrhiza or sulphur foam alone or together stimulated the growth and reduced Nematode infestation significantly. Treated plant at seedling stage increased plant growth and reduced the number of galls /gm of root system. The interaction between Mycorrhiza and sulpher foam treatments was not significant.


2020 ◽  
Author(s):  
Helen Maria Cockerton ◽  
Bo Li ◽  
Eleftheria Stavridou ◽  
Abigail Johnson ◽  
Amanda Karlström ◽  
...  

Abstract Background Phosphate is an essential plant macronutrient required to achieve maximum crop yield. Roots are able to uptake soil phosphate from the immediate root area, thus creating a nutrient depletion zone. Many plants are able to exploit phosphate from beyond this root nutrient depletion zone through symbiotic association with Arbuscular Mycorrhizal Fungi (AMF). Here we characterise the relationship between root architecture, AMF association and low phosphate tolerance in strawberries. The contrasting root architecture in the parental strawberry cultivars ‘Redgauntlet’ and ‘Hapil’ was studied through a mapping population of 168 progeny. Low phosphate tolerance and AMF association was quantified for each genotype to allow assessment of the phenotypic and genotypic relationships between traits. Results A “phosphate scavenging” root phenotype where individuals exhibit a high proportion of surface lateral roots was associated with a reduction in root system size across genotypes. A genetic correlation between “root system size” traits was observed with a network of pleiotropic QTL were found to represent five “root system size” traits. By contrast, average root diameter and the distribution of roots appeared to be under two discrete methods of genetic control. A total of 18 QTL were associated with plant traits, 4 of which were associated with solidity that explained 46 % of the observed variation. Investigations into the relationship between AMF association and root architecture found that a higher root density was associated with greater AMF colonisation across genotypes. However, no phenotypic correlation or genotypic association was found between low phosphate tolerance and the propensity for AMF association, nor root architectural traits when plants are grown under optimal nutrient conditions. Conclusions Understanding the genetic relationships underpinning phosphate capture can inform the breeding of strawberry varieties with better nutrient use efficiency. Solid root systems were associated with greater AMF colonisation. However, low P-tolerance was not phenotypically or genotypically associated with root architecture traits in strawberry plants. Furthermore, a trade-off was observed between root system size and root architecture type, highlighting the energetic costs associated with a “phosphate scavenging” root architecture.


2012 ◽  
Vol 58 (No. 6) ◽  
pp. 256-261 ◽  
Author(s):  
V. Castellanos-Morales ◽  
R. Cárdenas-Navarro ◽  
J.M. García-Garrido ◽  
A. Illana ◽  
J.A. Ocampo ◽  
...  

Gaeumannomyces graminis var. tritici causes take-all disease, the most important root disease of cereal plants. Cereal plants are able to form a symbiotic association with soil-borne arbuscular mycorrhizal fungi which can provide bioprotection against soil-borne fungal pathogens. However, the bioprotective effect of arbuscular mycorrhizal fungi against soil-borne fungal pathogens might vary. In the present study we tested the systemic bioprotective effect of the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices and Gigaspora rosea against the soil-borne fungal pathogen Gaeumannomyces graminis var. tritici in a barley split-root system. Glomus intraradices, Glomus mosseae and Gigaspora rosea colonized the split-root system of barley plants at different levels; however, all arbuscular mycorrhizal fungi clearly reduced the level of root lesions due to the pathogen Gaeumannomyces graminis. Our data indicate that some arbuscular mycorrhizal fungi need high root colonization rates to protect plants against fungal pathogens, whereas others act already at low root colonization rates.    


Sign in / Sign up

Export Citation Format

Share Document