Intrinsic atomic interaction at molecular proximal vicinity infer cellular biocompatibility of antibacterial nanopepper

Nanomedicine ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 307-322
Author(s):  
Ealisha Jha ◽  
Pritam Kumar Panda ◽  
Paritosh Patel ◽  
Puja Kumari ◽  
Swabhiman Mohanty ◽  
...  

Aim: Fabrication of nanopepper (NP) for antibacterial application and elucidation of its molecular and cellular biocompatibility. Materials & methods: Synthesis of NP was achieved using a high-energy ball milling method. Following characterization, its antibacterial activity and cellular and molecular biocompatibility were evaluated in vitro by experimental and computational approaches. Results: A total of 15 h of milling pepper produced NP with a size of 44 ± 12 nm and zeta potential of -22 ± 12 mV. Bulk pepper and NP showed antibacterial activity and an LC50 of 1.9 μM and 2.1 μM in HCT116 colon cells. Components of pepper, piperine and β-caryophyllene were found to interact with superoxide dismutase [Cu-Zn] and apoptotic protease-activating factor-1-caspase-9 through different amino acids via H-bonds. Conclusion: NP exhibits significant antibacterial activity with cellular biocompatibility due to intrinsic atomic interaction. Aim: Fabrication of nanopepper (NP) for antibacterial application and elucidation of its molecular and cellular biocompatibility. Materials & methods: Synthesis of NP was achieved using a high-energy ball milling method. Following characterization, its antibacterial activity and cellular and molecular biocompatibility were evaluated in vitro by experimental and computational approaches. Results: A total of 15 h of milling pepper produced NP with a size of 44 ± 12 nm and zeta potential of -22 ± 12 mV. Bulk pepper and NP showed antibacterial activity and an LC50 of 1.9 μM and 2.1 μM in HCT116 colon cells. Components of pepper, piperine and β-caryophyllene were found to interact with superoxide dismutase [Cu-Zn] and apoptotic protease-activating factor-1-caspase-9 through different amino acids via H-bonds. Conclusion: NP exhibits significant antibacterial activity with cellular biocompatibility due to intrinsic atomic interaction.

2011 ◽  
Vol 311-313 ◽  
pp. 1281-1285 ◽  
Author(s):  
Pei Hao Lin ◽  
Lei Wang ◽  
Shun Kang Pan ◽  
Hua Mei Wan

The NdFe magnetic absorbing materials were prepared by rapid solidification and high-energy ball milling method. The effect of high-energy ball milling on particle morphology, organizational structure and microwave absorbing properties of NdFe magnetic absorbing materials were analyzed with the aid of X-ray diffractometer, scanning electron microscope and vector network analysis. The results show that the Nd2Fe17 and α-Fe phase are refined, the particles become smaller and thinner; the span-ratio of the particles increases along with time during the process of high-energy ball milling; and meanwhile, the frequency of absorbing peak reduces. The absorbing bandwidth broadens as the increase of the time of ball milling, except that of 48h.The minimum reflectance of the powder decreases from -22dB to - 44dB under the circumstances that the time of high energy ball milling reaches 48h and the thickness of the microwave absorbing coating is 1.5mm. But it rebounds to about - 6dB when the time of ball milling reaches 72h.


Nanoscale ◽  
2015 ◽  
Vol 7 (47) ◽  
pp. 20180-20187 ◽  
Author(s):  
Wei Qin ◽  
Lu Han ◽  
Hai Bi ◽  
Jiahuang Jian ◽  
Xiaohong Wu ◽  
...  

With the high energy ball milling method, a Co9S8-decorated reduced graphene oxide (RGO) composite, which shows excellent hydrogen storage capacity, has been successfully fabricated with a well-organized layered structure.


1991 ◽  
Vol 261 (6) ◽  
pp. H1919-H1926
Author(s):  
M. Osbakken ◽  
D. N. Zhang ◽  
D. Nelson ◽  
M. Erecinska

Feeding Sprague-Dawley rats for 3 wk a diet containing 1% by weight of cyclocreatine increased the reservoir of the high-energy phosphate compounds but also caused alterations in the levels of the two key amino acids, aspartate and glutamate. Both were decreased by approximately 50% in the presence of an unaltered content of glutamine. In vitro exposure of these hearts to sequential perfusion, global ischemia, and reperfusion in the absence of added amino acids resulted in changes in aspartate, glutamate, and glutamine that were different from those in hearts from control rats. In the cyclocreatine-fed group, aspartate concentration ([aspartate]) and [glutamate] fell after global ischemia, whereas [glutamine] was unaltered. [Glutamine] decreased, however, in the reperfusion period. In control hearts, the predominant effect was a steady decline in glutamine, which was accompanied by either less than 10% (after global ischemia) or 30-50% fall (after reperfusion) in [aspartate] and [glutamate]. The concentration of tissue Pi was smaller in hearts from cyclocreatine-fed rats and appeared to increase more slowly during ischemia. In the presence of rotenone and aminooxyacetate, heart homogenates catalyzed production of glutamate from glutamine, which was markedly stimulated by Pi and inhibited by H+. It is postulated that 1) phosphate-activated glutaminase is an important enzyme that determines cardiac [glutamate], 2) lower [phosphate] in hearts from rats fed cyclocreatine is responsible for the apparently lesser activity of glutaminase, 3) breakdown of the high-energy phosphate compounds and consequent rise in Pi activates glutaminase, and 4) slow breakdown of glutamine during global ischemia is a result of inhibition of glutaminase by H+.


Sign in / Sign up

Export Citation Format

Share Document