Induced pluripotent stem cells: opportunities as research and development tools in 21st century drug discovery

2010 ◽  
Vol 5 (4) ◽  
pp. 557-568 ◽  
Author(s):  
Rebecca K Rowntree ◽  
John D McNeish
2016 ◽  
Vol 17 (2) ◽  
pp. 256 ◽  
Author(s):  
Mohammed Kawser Hossain ◽  
Ahmed Abdal Dayem ◽  
Jihae Han ◽  
Subbroto Kumar Saha ◽  
Gwang-Mo Yang ◽  
...  

2020 ◽  
Author(s):  
Engi Ahmed ◽  
Mathieu Fieldes ◽  
Chloé Bourguignon ◽  
Joffrey Mianné ◽  
Aurélie Petit ◽  
...  

AbstractRationaleHighly reproducible in vitro generation of human bronchial epithelium from pluripotent stem cells is an unmet key goal for drug screening to treat lung diseases. The possibility of using induced pluripotent stem cells (hiPSC) to model normal and diseased tissue in vitro from a simple blood sample will reshape drug discovery for chronic lung, monogenic and infectious diseases.MethodsWe devised a simple and reliable method that drives a blood sample reprogrammed into hiPSC subsequently differentiated within 45 days into air-liquid interface bronchial epithelium (iALI), through key developmental stages, definitive-endoderm (DE) and Ventralized-Anterior-Foregut-Endoderm (vAFE) cells.ResultsReprogramming blood cells from one healthy and 3 COPD patients, and from skin-derived fibroblasts obtained in one PCD patient, succeeded in 100% of samples using Sendai viruses. Mean cell purity at DE and vAFE stages was greater than 80%, assessed by expression of CXCR4 and NKX2.1, avoiding the need of cell sorting. When transferred to ALI conditions, vAFE cells reliably differentiated within 4 weeks into bronchial epithelium with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells as found in vivo. Benchmarking all culture conditions including hiPSCs adaptation to single-cell passaging, cell density and differentiation induction timing allowed for consistently producing iALI bronchial epithelium from the five hiPSC lines.ConclusionsReliable reprogramming and differentiation of blood-derived hiPSCs into mature and functional iALI bronchial epithelium is ready for wider use and this will allow better understanding lung disease pathogenesis and accelerating the development of novel gene therapies and drug discovery.


2012 ◽  
Vol 120 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Lezanne Ooi ◽  
Kuldip Sidhu ◽  
Anne Poljak ◽  
Greg Sutherland ◽  
Michael D. O’Connor ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Claudia De Masi ◽  
Paola Spitalieri ◽  
Michela Murdocca ◽  
Giuseppe Novelli ◽  
Federica Sangiuolo

2019 ◽  
Vol 24 (4) ◽  
pp. 992-999 ◽  
Author(s):  
Atena Farkhondeh ◽  
Rong Li ◽  
Kirill Gorshkov ◽  
Kevin G. Chen ◽  
Matthew Might ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document