scholarly journals ON SOME EQUIVALENCE RELATION ON NON-ABELIAN $\CA$-GROUPS

Author(s):  
Mohammad A. Iranmanesh ◽  
Mohammad Hossein Zareian

A non-abelian group $G$ is called a $\CA$-group ($\CC$-group) if $C_G(x)$ is abelian(cyclic) for all $x\in G\setminus Z(G)$. We say $x\sim y$ if and only if $C_G(x)=C_G(y)$.We denote the equivalence class including $x$ by$[x]_{\sim}$. In this paper, we prove thatif $G$ is a $\CA$-group and $[x]_{\sim}=xZ(G)$, for all $x\in G$, then $2^{r-1}\leq|G'|\leq 2^{r\choose 2}$.where $\frac {|G|}{|Z(G)|}=2^{r}, 2\leq r$ and characterize all groups whose $[x]_{\sim}=xZ(G)$for all $x\in G$ and $|G|\leq 100$. Also, we will show that if $G$ is a $\CC$-group and $[x]_{\sim}=xZ(G)$,for all $x \in G$, then $G\cong C_m\times Q_8$ where $C_m$ is a cyclic group of odd order $m$ andif $G$ is a $\CC$-group and $[x]_{\sim}=x^G$, for all $x\in G\setminus Z(G)$, then $G\cong Q_8$.

2007 ◽  
Vol 82 (3) ◽  
pp. 297-314 ◽  
Author(s):  
Lynn M. Batten ◽  
Robert S. Coulter ◽  
Marie Henderson

AbstractFor any abelian group G and any function f: G → G we define a commutative binary operation or ‘multiplication’ on G in terms of f. We give necessary and sufficient conditions on f for G to extend to a commutative ring with the new multiplication. In the case where G is an elementary abelian p–group of odd order, we classify those functions which extend G to a ring and show, under an equivalence relation we call weak isomorphism, that there are precisely six distinct classes of rings constructed using this method with additive group the elementary abelian p–group of odd order p2.


10.37236/8542 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
M. A. Ollis ◽  
Christopher R. Tripp

We construct sequencings for many groups that are a semi-direct product of an odd-order abelian group and a cyclic group of odd prime order.  It follows from these constructions that there is a group-based complete Latin square of order $n$ if and only if $n \in \{ 1,2,4\}$ or there is a non-abelian group of order $n$.


1968 ◽  
Vol 11 (2) ◽  
pp. 285-288
Author(s):  
U.S.R. Murty

Let A be an m×n (0, l )-matrix. Let C1, C2, …, Cn denote its columns. A sequence of distinct columns is said to form a chain if the inner product of and (for 1 ≤ t ≤ k-l) is at least one. k-1 is called the length of the chain and this chain is said to connect are said to be connected. As can be easily seen, connectedness is an equivalence relation on the set of columns. A matrix is called connected if all its columns belong to the same equivalence class. If Ci and Cj belong to the same equivalence class, then s(Ci, Cj) will denote the length of the shortest chain between Ci and Cj We define the distance between any two columns Ci and Cj to be denoted by d(Ci, Cj), in the following manner.


1960 ◽  
Vol 12 ◽  
pp. 73-100 ◽  
Author(s):  
Daniel Gorenstein

In the course of investigating the structure of finite groups which have a representation in the form ABA, for suitable subgroups A and B, we have been forced to study groups G which admit an automorphism ϕ such that every element of G lies in at least one of the orbits under ϕ of the elements g, gϕr(g), gϕrϕ(g)ϕ2r(g), gϕr(g)ϕr2r(g)ϕ3r(g), etc., where g is a fixed element of G and r is a fixed integer.In a previous paper on ABA-groups written jointly with I. N. Herstein (4), we have treated the special case r = 0 (in which case every element of G can be expressed in the form ϕi(gj)), and have shown that if the orders of ϕ and g are relatively prime, then G is either Abelian or the direct product of an Abelian group of odd order and the quaternion group of order 8.


1971 ◽  
Vol 12 (2) ◽  
pp. 187-192
Author(s):  
Charles V. Heuer

In [1] D. W. Miller and the author established necessary and sufficient conditions for the existence of a cancellative (ideal) extension of a commutative cancellative semigroup by a cyclic group with zero. The purpose of this paper is to extend these results to cancellative extensions by any finitely generated Abelian group with zero and to establish in this general case conditions under which two such extensions are equivalent.


1978 ◽  
Vol 25 (3) ◽  
pp. 264-268 ◽  
Author(s):  
Thomas R. Berger ◽  
Marcel Herzog

AbstractLet k be a complex number and let u be an element of a finite group G. Suppose that u does not belong to O(G), the maximal normal subgroup of G of odd order. It is shown that G satisfies X(1) – X(u) = k for every complex nonprincipal irreducible character X in the principal 2-block of G if and only if G/O(G) is isomorphic either to C2, a cyclic group of order 2, or to PSL (2, 2n), n ≧ 2.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1044 ◽  
Author(s):  
Jeong-Gon Lee ◽  
Kul Hur

We introduce the concepts of a bipolar fuzzy reflexive, symmetric, and transitive relation. We study bipolar fuzzy analogues of many results concerning relationships between ordinary reflexive, symmetric, and transitive relations. Next, we define the concepts of a bipolar fuzzy equivalence class and a bipolar fuzzy partition, and we prove that the set of all bipolar fuzzy equivalence classes is a bipolar fuzzy partition and that the bipolar fuzzy equivalence relation is induced by a bipolar fuzzy partition. Finally, we define an ( a , b ) -level set of a bipolar fuzzy relation and investigate some relationships between bipolar fuzzy relations and their ( a , b ) -level sets.


2017 ◽  
Vol 13 (04) ◽  
pp. 913-932 ◽  
Author(s):  
Sin Yi Cindy Tsang

Let [Formula: see text] be a number field with ring of integers [Formula: see text] and let [Formula: see text] be a finite abelian group of odd order. Given a [Formula: see text]-Galois [Formula: see text]-algebra [Formula: see text], write [Formula: see text] for its trace map and [Formula: see text] for its square root of the inverse different, where [Formula: see text] exists by Hilbert’s formula since [Formula: see text] has odd order. The pair [Formula: see text] is locally [Formula: see text]-isometric to [Formula: see text] whenever [Formula: see text] is weakly ramified, in which case it defines a class in the unitary class group [Formula: see text] of [Formula: see text]. Here [Formula: see text] denotes the canonical symmetric bilinear form on [Formula: see text] defined by [Formula: see text] for all [Formula: see text]. We will study the set of all such classes and show that a subset of them forms a subgroup of [Formula: see text].


2018 ◽  
Vol 17 (04) ◽  
pp. 1850065
Author(s):  
Alireza Abdollahi ◽  
Majid Arezoomand

Let [Formula: see text] be any group and [Formula: see text] be a subgroup of [Formula: see text] for some set [Formula: see text]. The [Formula: see text]-closure of [Formula: see text] on [Formula: see text], denoted by [Formula: see text], is by definition, [Formula: see text] The group [Formula: see text] is called [Formula: see text]-closed on [Formula: see text] if [Formula: see text]. We say that a group [Formula: see text] is a totally[Formula: see text]-closed group if [Formula: see text] for any set [Formula: see text] such that [Formula: see text]. Here we show that the center of any finite totally 2-closed group is cyclic and a finite nilpotent group is totally 2-closed if and only if it is cyclic or a direct product of a generalized quaternion group with a cyclic group of odd order.


2020 ◽  
Vol 30 (1) ◽  
pp. 15-25
Author(s):  
T. Banakh ◽  
◽  
A. Ravsky ◽  

A subset D of an abelian group is decomposable if ∅≠D⊂D+D. In the paper we give partial answers to an open problem asking whether every finite decomposable subset D of an abelian group contains a non-empty subset Z⊂D with ∑Z=0. For every n∈N we present a decomposable subset D of cardinality |D|=n in the cyclic group of order 2n−1 such that ∑D=0, but ∑T≠0 for any proper non-empty subset T⊂D. On the other hand, we prove that every decomposable subset D⊂R of cardinality |D|≤7 contains a non-empty subset T⊂D of cardinality |Z|≤12|D| with ∑Z=0. For every n∈N we present a subset D⊂Z of cardinality |D|=2n such that ∑Z=0 for some subset Z⊂D of cardinality |Z|=n and ∑T≠0 for any non-empty subset T⊂D of cardinality |T|<n=12|D|. Also we prove that every finite decomposable subset D of an Abelian group contains two non-empty subsets A,B such that ∑A+∑B=0.


Sign in / Sign up

Export Citation Format

Share Document