scholarly journals Geodetic Global Domination in the Join of Two Graphs

2020 ◽  
Vol 8 (5) ◽  
pp. 4579-4583

A set S of vertices in a connected graph is called a geodetic set if every vertex not in lies on a shortest path between two vertices from . A set of vertices in is called a dominating set of if every vertex not in has at least one neighbor in . A set is called a geodetic global dominating set of if is both geodetic and global dominating set of . The geodetic global dominating number is the minimum cardinality of a geodetic global dominating set in . In this paper we determine the geodetic global domination number of the join of two graphs.

2020 ◽  
Vol 12 (04) ◽  
pp. 2050043
Author(s):  
X. Lenin Xaviour ◽  
S. Robinson Chellathurai

A set S of vertices in a connected graph [Formula: see text] is called a geodetic set if every vertex not in [Formula: see text] lies on a shortest path between two vertices from [Formula: see text]. A set [Formula: see text] of vertices in [Formula: see text] is called a dominating set of [Formula: see text] if every vertex not in [Formula: see text] has at least one neighbor in [Formula: see text]. A set [Formula: see text] is called a geodetic global dominating set of [Formula: see text] if [Formula: see text] is both geodetic and global dominating set of [Formula: see text]. The geodetic global domination number is the minimum cardinality of a geodetic global dominating set in [Formula: see text]. In this paper, we determine the geodetic global domination number of the corona and strong products of two graphs.


2020 ◽  
Vol 39 (6) ◽  
pp. 1627-1647
Author(s):  
X. Lenin Xaviour ◽  
S. Robinson Chellathurai

A set S of vertices in a connected graph G = (V, E) is called a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A set D of vertices in G is called a dominating set of G if every vertex not in D has at least one neighbor in D. A set D is called a global dominating set in G if S is a dominating set of both G and Ḡ. A set S is called a geodetic global dominating set of G if S is both geodetic and global dominating set of G. A geodetic global dominating set S in G is called a minimal geodetic global dominating set if no proper subset of S is itself a geodetic global dominating set in G. The maximum cardinality of a minimal geodetic global dominating set in G is the upper geodetic global domination number Ῡg+(G) of G. In this paper, the upper geodetic global domination number of certain connected graphs are determined and some of the general properties are studied. It is proved that for all positive integers a, b, p where 3 ≤ a ≤ b < p, there exists a connected graph G such that Ῡg(G) = a, Ῡg+(G) = b and |V (G)| = p.


2021 ◽  
Vol 40 (3) ◽  
pp. 635-658
Author(s):  
J. John ◽  
V. Sujin Flower

Let G = (V, E) be a connected graph with at least three vertices. A set S ⊆ E(G) is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G. The edge-to-edge geodetic domination number γgee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets. Some general properties satisfied by this concept are studied. Connected graphs of size m with edge-to-edge geodetic domination number 2 or m or m − 1 are characterized. We proved that if G is a connected graph of size m ≥ 4 and Ḡ is also connected, then 4 ≤ γgee(G) + γgee(Ḡ) ≤ 2m − 2. Moreover we characterized graphs for which the lower and the upper bounds are sharp. It is shown that, for every pair of positive integers a, b with 2 ≤ a ≤ b, there exists a connected graph G with gee(G) = a and γgee(G) = b. Also it is shown that, for every pair of positive integers a and b with 2 < a ≤ b, there exists a connected graph G with γe(G) = a and γgee(G) = b, where γe(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.


Filomat ◽  
2016 ◽  
Vol 30 (11) ◽  
pp. 3075-3082
Author(s):  
Yero González ◽  
Magdalena Lemńska

The distance d(u,v) between two vertices u and v in a connected graph G is the length of a shortest u-v path in G. A u-v path of length d(u,v) is called u-v geodesic. A set X is convex in G if vertices from all a -b geodesics belong to X for every two vertices a,b?X. A set of vertices D is dominating in G if every vertex of V-D has at least one neighbor in D. The convex domination number con(G) of a graph G equals the minimum cardinality of a convex dominating set in G. A set of vertices S of a graph G is a geodetic set of G if every vertex v ? S lies on a x-y geodesic between two vertices x,y of S. The minimum cardinality of a geodetic set of G is the geodetic number of G and it is denoted by g(G). Let D,S be a convex dominating set and a geodetic set in G, respectively. The two sets D and S form a convex dominating-geodetic partition of G if |D| + |S| = |V(G)|. Moreover, a convex dominating-geodetic partition of G is called optimal if D is a ?con(G)-set and S is a g(G)-set. In the present article we study the (optimal) convex dominating-geodetic partitions of graphs.


10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050052 ◽  
Author(s):  
Lidan Pei ◽  
Xiangfeng Pan

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple connected graph. The eccentric distance sum of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the maximum distance from [Formula: see text] to any other vertex and [Formula: see text] is the sum of all distances from [Formula: see text]. A set [Formula: see text] is a distance [Formula: see text]-dominating set of [Formula: see text] if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text]. The minimum cardinality among all distance [Formula: see text]-dominating sets of [Formula: see text] is called the distance [Formula: see text]-domination number [Formula: see text] of [Formula: see text]. In this paper, the trees among all [Formula: see text]-vertex trees with distance [Formula: see text]-domination number [Formula: see text] having the minimal eccentric distance sum are determined.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750069 ◽  
Author(s):  
R. Vasanthi ◽  
K. Subramanian

Let [Formula: see text] be a simple and connected graph. A dominating set [Formula: see text] is said to be a vertex covering transversal dominating set if it intersects every minimum vertex covering set of [Formula: see text]. The vertex covering transversal domination number [Formula: see text] is the minimum cardinality among all vertex covering transversal dominating sets of [Formula: see text]. A vertex covering transversal dominating set of minimum cardinality [Formula: see text] is called a minimum vertex covering transversal dominating set or simply a [Formula: see text]-set. In this paper, we prove some general theorems on the vertex covering transversal domination number of a simple connected graph. We also provide some results about [Formula: see text]-sets and try to classify those sets based on their intersection with the minimum vertex covering sets.


Throughout this paper, consider G = (V,E) as a connected graph. A subset D of V(G) is a set dominating set of G if for every M  V / D there exists a non-empty set N of D such that the induced sub graph <MUN> is connected. A subset D of the vertex set of a graph G is called a co-secure dominating set of a graph if D is a dominating set, and for each u' D there exists a vertex v'V / D such that u'v' is an edge and D \u'v' is a dominating set. A co-secure dominating set D is a co-secure set dominating set of G if D is also a set dominating set of G. The co-secure set domination number G s cs γ is the minimum cardinality of a co-secure set dominating set. In this paper we initiate the study of this new parameter & also determine the co-secure set domination number of some standard graphs and obtain its bounds.


2020 ◽  
Vol 2 (2) ◽  
pp. 105-110
Author(s):  
Emily L Casinillo ◽  
Leomarich F Casinillo ◽  
Jorge S Valenzona ◽  
Divina L Valenzona

Let T_m=(V(T_m), E(T_m)) be a triangular grid graph of m ϵ N level. The order of graph T_m is called a triangular number. A subset T of V(T_m) is a dominating set of T_m  if for all u_V(T_m)\T, there exists vϵT such that uv ϵ E(T_m), that is, N[T]=V(T_m).  A dominating set T of V(T_m) is a secure dominating set of T_m if for each u ϵ V(T_m)\T, there exists v ϵ T such that uv ϵ E(T_m) and the set (T\{u})ꓴ{v} is a dominating set of T_m. The minimum cardinality of a secure dominating set of T_m, denoted by γ_s(T_m)  is called a secure domination number of graph T_m. A secure dominating number  γ_s(T_m) of graph T_m is a triangular secure domination number if γ_s(T_m) is a triangular number. In this paper, a combinatorial formula for triangular secure domination number of graph T_m was constructed. Furthermore, the said number was evaluated in relation to perfect numbers.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050084
Author(s):  
John Joy Mulloor ◽  
V. Sangeetha

Let [Formula: see text] be a graph with edge set [Formula: see text] and vertex set [Formula: see text]. For a connected graph [Formula: see text], a vertex set [Formula: see text] of [Formula: see text] is said to be a geodetic set if every vertex in [Formula: see text] lies in a shortest path between any pair of vertices in [Formula: see text]. If the geodetic set [Formula: see text] is dominating, then [Formula: see text] is geodetic dominating set. A vertex set [Formula: see text] of [Formula: see text] is said to be a restrained geodetic dominating set if [Formula: see text] is geodetic, dominating and the subgraph induced by [Formula: see text] has no isolated vertex. The minimum cardinality of such set is called restrained geodetic domination (rgd) number. In this paper, rgd number of certain classes of graphs and 2-self-centered graphs was discussed. The restrained geodetic domination is discussed in graph operations such as Cartesian product and join of graphs. Restrained geodetic domination in corona product between a general connected graph and some classes of graphs is also discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document