scholarly journals Linear maps on ℬ(ℋ) preserving some operator properties

2021 ◽  
Vol 40 (6) ◽  
pp. 1357-1365
Author(s):  
Abolfazl Niazi Motlagh ◽  
Abasalt Bodaghi ◽  
Somaye Grailoo Tanha

In this paper, for a complex Hilbert space ℋ with dim ℋ ≥ 2, we study the linear maps on ℬ(ℋ), the bounded linear operators on ℋ, that preserves projections and idempotents. As a result, we characterize the linear maps on ℬ(ℋ) that preserves involutions in both directions.

2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


1974 ◽  
Vol 26 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Carl Pearcy ◽  
Norberto Salinas

Let be a fixed separable, infinite dimensional complex Hilbert space, and let () denote the algebra of all (bounded, linear) operators on . The ideal of all compact operators on will be denoted by and the canonical quotient map from () onto the Calkin algebra ()/ will be denoted by π.Some open problems in the theory of extensions of C*-algebras (cf. [1]) have recently motivated an increasing interest in the class of all operators in () whose self-commuta tor is compact.


2015 ◽  
Vol 17 (05) ◽  
pp. 1450042
Author(s):  
Weijuan Shi ◽  
Xiaohong Cao

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T ∈ B(H) satisfies Weyl's theorem if σ(T)\σw(T) = π00(T), where σ(T) and σw(T) denote the spectrum and the Weyl spectrum of T, respectively, π00(T) = {λ ∈ iso σ(T) : 0 < dim N(T - λI) < ∞}. T ∈ B(H) is said to have the stability of Weyl's theorem if T + K satisfies Weyl's theorem for all compact operator K ∈ B(H). In this paper, we characterize the operator T on H satisfying the stability of Weyl's theorem holds for T2.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Chaoqun Chen ◽  
Fangyan Lu ◽  
Cuimei Cui ◽  
Ling Wang

Let H be a complex Hilbert space. Denote by B H the algebra of all bounded linear operators on H . In this paper, we investigate the non-self-adjoint subalgebras of B H of the form T + B , where B is a block-closed bimodule over a masa and T is a subalgebra of the masa. We establish a sufficient and necessary condition such that the subalgebras of the form T + B has the double commutant property in some particular cases.


2021 ◽  
Vol 54 (1) ◽  
pp. 318-325
Author(s):  
Nadia Mesbah ◽  
Hadia Messaoudene ◽  
Asma Alharbi

Abstract Let ℋ {\mathcal{ {\mathcal H} }} be a complex Hilbert space and ℬ ( ℋ ) {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) denotes the algebra of all bounded linear operators acting on ℋ {\mathcal{ {\mathcal H} }} . In this paper, we present some new pairs of generalized finite operators. More precisely, new pairs of operators ( A , B ) ∈ ℬ ( ℋ ) × ℬ ( ℋ ) \left(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) satisfying: ∥ A X − X B − I ∥ ≥ 1 , for all X ∈ ℬ ( ℋ ) . \parallel AX-XB-I\parallel \ge 1,\hspace{1.0em}\hspace{0.1em}\text{for all}\hspace{0.1em}\hspace{0.33em}X\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}). An example under which the class of such operators is not invariant under similarity orbit is given. Range kernel orthogonality of generalized derivation is also studied.


2005 ◽  
Vol 12 (4) ◽  
pp. 717-726
Author(s):  
Salah Mecheri

Abstract Let 𝐻 be a separable infinite dimensional complex Hilbert space, and let 𝔹(𝐻) denote the algebra of all bounded linear operators on 𝐻. Let 𝐴, 𝐵 be operators in 𝔹(𝐻). We define the generalized derivation δ 𝐴, 𝐵 : 𝔹(𝐻) ↦ 𝔹(𝐻) by δ 𝐴, 𝐵(𝑋) = 𝐴𝑋 – 𝑋𝐵. In this paper we consider the question posed by Turnsek [Publ. Math. Debrecen 63: 293–304, 2003], when ? We prove that this holds in the case where 𝐴 and 𝐵 satisfy the Fuglede–Putnam theorem. Finally, we apply the obtained results to double operator integrals.


1992 ◽  
Vol 35 (2) ◽  
pp. 278-286
Author(s):  
Wai-Shing Tang

AbstractWe study the properties of a new class SCB(L, B) of bounded linear maps, called symmetrically completely bounded maps, from a linear subspace L of a C* -algebra to another C*-algebra B. This class contains the class of all completely bounded linear maps from L to B. In particular, we obtain a representation theorem for maps in SCB(L, B) when B is the algebra of all bounded linear operators on a Hilbert space.


1996 ◽  
Vol 53 (3) ◽  
pp. 391-400 ◽  
Author(s):  
Lajos Molnár

Let H be a complex Hilbert space and let B(H) denote the algebra of all bounded linear operators on H. In this paper we give two necessary and sufficient conditions for an additive bijection of B(H) to be a *-automorphism. Both of the results in the paper are related to the so-called preserver problems.


2013 ◽  
Vol 59 (1) ◽  
pp. 163-172
Author(s):  
Salah Mecheri

Abstract Let H be a separable infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on H. Let A;B be operators in B(H). In this paper we prove that if A is quasi-class A and B* is invertible quasi-class A and AX = XB, for some X ∈ C2 (the class of Hilbert-Schmidt operators on H), then A*X = XB*. We also prove that if A is a quasi-class A operator and f is an analytic function on a neighborhood of the spectrum of A, then f(A) satisfies generalized Weyl's theorem. Other related results are also given.


1981 ◽  
Vol 33 (2) ◽  
pp. 257-274
Author(s):  
Takayuki Furuta

Let H be a separable complex Hilbert space and let B(H) denote the algebra of all bounded linear operators on H. Let π be the quotient mapping from B(H) onto the Calkin algebra B(H)/K(H), where K(H) denotes all compact operators on B(H). An operator T ∈ B(H) is said to be convexoid[14] if the closure of its numerical range W(T) coincides with the convex hull co σ(T) of its spectrum σ(T). T ∈ B(H) is said to be essentially normal, essentially G1, or essentially convexoid if π(T) is normal, G1 or convexoid in B(H)/K(H) respectively.


Sign in / Sign up

Export Citation Format

Share Document