scholarly journals Identification of jarosite and other major mineral Fe phases in acidic environments affected by mining-metallurgy using X-ray Absorption Spectroscopy: With special emphasis on the August 2014 Cananea acid spill

2019 ◽  
Vol 36 (2) ◽  
pp. 229-241 ◽  
Author(s):  
Ingrid Nayeli Escobar-Quiroz ◽  
Mario Villalobos-Peñalosa ◽  
Teresa Pi-Puig ◽  
Francisco Martín Romero ◽  
Javier Aguilar-Carrillo de Albornoz

The sulfuric acid spill into the Sonora river, enriched in iron and copper ions from the Buenavista del Cobre mine (Cananea), gave way to the formation of various solid iron (Fe) phases. In this study, the mineral phases were identified by X-ray Absorption Spectroscopy (XAS) and bulk powder X-Ray Diffraction (XRD), and chemically through acid digestions for multielemental quantification, as well as a 3-step selective sequential extraction (SSE) to quantify the types of Fe oxide phases and the contribution of the associated elements. Jarosite was the only Fe mineral identified by XRD, but XAS allowed identification of jarosite with potentially toxic elements (PTEs) incorporated in its structure, making these elements less prone to leaching. In addition, very poorly crystalline phases such as schwertmannite and ferrihydrite were identified in several samples through XAS, which was confirmed by SSE. These phases are probably associated with PTEs. Other possible adsorbent Fe(III) minerals were also identified by XAS, such as maghemite and goethite; as well as mixed Fe(II)-Fe(III) minerals, such as green rust. It was possible to infer the influence of the acid spill on the different sampled areas through various Fe phases identified and/or the presence of gypsum. The influence was detected to be lower where the mineralogy was not associated to low pH and high sulfate concentrations. All precipitated Fe(III) phases downriver from the acid spill are known for their high retention capacities of PTEs either from incorporation into their structures and/or from surface adsorption, thus, contributing to the immobilization of the initial metal(loid) pollution caused by the acid spill. In addition, several other samples of mining-metallurgical wastes were analyzed by the same three techniques, suggesting many of the findings from the secondary Fe mineralogy of the Buenavista del Cobre mine acid spill as common processes occurring in mining-affected environments.

2009 ◽  
Vol 1193 ◽  
Author(s):  
B. L. Metcalfe ◽  
S. K. Fong ◽  
L. A. Gerrard ◽  
I. W. Donald ◽  
E. S. Welch ◽  
...  

AbstractThe choice of surrogate for plutonium oxide for use during the initial stages of research into the immobilization of intermediate level pyrochemical wastes containing plutonium andamericium oxides in a calcium phosphate host has been investigated by powder X-ray diffraction and X-ray absorption spectroscopy. Two non-radioactive surrogates, hafnium oxide and cerium oxide, together with radioactive thorium oxide were compared. Similarities in behaviour were observed for all three surrogates when calcined at the lowest temperature, 750°C but differences became more pronounced as the calcination temperature was increased to 950°C. Although some reaction occurred between all the surrogates and the host to form a substituted whitlockite phase, increasing the temperature led to a significant increase in the cerium reaction and the formation of an additional phase, monazite. Additionally it was observed that the cerium became increasingly trivalent at higher temperatures.


1997 ◽  
Vol 496 ◽  
Author(s):  
Yair Ein-Eli ◽  
W. F. Howard ◽  
Sharon H. Lu ◽  
Sanjeev Mukerjee ◽  
James McBreen ◽  
...  

ABSTRACTA series of electroactive spinel compounds, LiMn2-xCuxO4 (0.1 ≤ x ≤ 0.5) has been studied by crystallographic, spectroscopie and electrochemical methods and by electron-microscopy. These LiMn2-xCuxO4 spinels are nearly identical in structure to cubic LiMn2O4 and successfully undergo reversible Li intercalation. The electrochemical data show slight shifts to higher voltage for the delithiation reaction that normally occurs at 4.1 V in standard Li1−xMn2O4 electrodes (1 ≥ x ≥ 0) corresponding to the oxidation of Mn3+ to Mn4+. The data also show a remarkable reversible electrochemical process at 4.9 V which is attributed to the oxidation of Cu2+ to Cu3+. The inclusion of Cu in the spinel structure enhances the electrochemical stability of these materials upon cycling. The initial capacity of LiMn2-xCuxO4 spinels decreases with increasing x from 130 mAh/g in LiMn2O4 (x=0) to 70 mAh/g in “LiMn1.5Cu0.5O4”(x=0.5). Although the powder X-ray diffraction pattern of “LiMn1.5Cu0.5 O4” shows a single-phase spinel product, neutron diffraction data show a small, but significant quantity of an impurity phase, the composition and structure of which could not be identified. X-ray absorption spectroscopy was used to gather information about the oxidation states of the manganese and copper ions. The composition of the spinel component in the LiMn1.5Cu0.5O4 was determined from X-ray diffraction and XANES data to be Li1.01Mn1.67Cu0.32O4 suggesting, to a best approximation, that the impurity in the sample was a lithium-copper-oxide phase.


2020 ◽  
Vol 153 (6) ◽  
pp. 064501
Author(s):  
Emiliano Fonda ◽  
Alain Polian ◽  
Toru Shinmei ◽  
Tetsuo Irifune ◽  
Jean-Paul Itié

2015 ◽  
Vol 54 (23) ◽  
pp. 11127-11135 ◽  
Author(s):  
Martina Vrankić ◽  
Biserka Gržeta ◽  
Dirk Lützenkirchen-Hecht ◽  
Sanja Bosnar ◽  
Ankica Šarić

2020 ◽  
Vol 22 (20) ◽  
pp. 11713-11723 ◽  
Author(s):  
Abhijeet Gaur ◽  
Matthias Stehle ◽  
Kristian Viegaard Raun ◽  
Joachim Thrane ◽  
Anker Degn Jensen ◽  
...  

Combination of in situ multi-edge X-ray absorption spectroscopy at the Mo K- and Fe K-edges in combination with X-ray diffraction successfully uncovered structural dynamics and phase transformations of an iron molybdate catalyst during redox cycling.


2014 ◽  
Vol 118 (47) ◽  
pp. 27210-27218 ◽  
Author(s):  
Marcus Fehse ◽  
Mouna Ben Yahia ◽  
Laure Monconduit ◽  
Frédéric Lemoigno ◽  
Marie-Liesse Doublet ◽  
...  

2010 ◽  
Vol 44 (22) ◽  
pp. 8467-8472 ◽  
Author(s):  
Brandon J. Lafferty ◽  
Matthew Ginder-Vogel ◽  
Mengqiang Zhu ◽  
Kenneth J. T. Livi ◽  
Donald L. Sparks

Sign in / Sign up

Export Citation Format

Share Document