scholarly journals Voice Command Based Robotic Vehicle Control

Author(s):  
P R Bhole
1997 ◽  
Author(s):  
Jouko O. Viitanen ◽  
Janne Haverinen ◽  
Pentti Mattila ◽  
Hannu Maekelae ◽  
Thomas von Numers ◽  
...  

2021 ◽  
Vol 1 (4) ◽  
pp. 1-5
Author(s):  
N. R. Deepak ◽  
◽  
Suhas G K ◽  
Bhagappa ◽  
◽  
...  

Ocean Exploration and Navigational Research is driving undertakings by supporting undertakings with PC vision frameworks have shown potential for Sailboat robots made to make assessments at the surface. The marine environment presents an in each commonsense sense, ideal showing ground for the assessment and improvement of robotized progressions. Robot cruising is a tricky task in both turn of events and controlling the boat consequently it joins a wide degree of orders. The cruising robot researches in comprehension of video film, the ID of cruising features, human-robot correspondence, vehicle control, position assessment and mechanical course of action. Key applications for this vessel are the appraisal of marine living spaces and complex moves. An idea presented has been with a Robotic vehicle what starts normally and truly control the moving thing in the water the robot will get and sends the information to the PC which uses advanced picture managing improvement and investigates appropriate pictures by seeing cut down features which will follow the article present in the outside of ocean. The DC motors are used to turn the arms of the robot to get living spaces.


Author(s):  
Deepak NR ◽  
◽  
Bhagappa ◽  
Suhas GK ◽  
◽  
...  

Ocean Exploration and Navigational Research is driving undertakings by supporting undertakings with PC vision frameworks have shown potential for Sailboat robots made to make assessments at the surface. The marine environment presents an in each commonsense sense, ideal showing ground for the assessment and improvement of robotized progressions. Robot cruising is a tricky task in both turn of events and controlling the boat consequently it joins a wide degree of orders. The cruising robot researches in comprehension of video film, the ID of cruising features, human-robot correspondence, vehicle control, position assessment and mechanical course of action. Key applications for this vessel are the appraisal of marine living spaces and complex moves. An idea presented has been with a Robotic vehicle what starts normally and truly control the moving thing in the water the robot will get and sends the information to the PC which uses advanced picture managing improvement and investigates appropriate pictures by seeing cut down features which will follow the article present in the outside of ocean. The DC motors are used to turn the arms of the robot to get living spaces.


2015 ◽  
Vol 114 (17) ◽  
pp. 15-19 ◽  
Author(s):  
Ketan Dumbre ◽  
Snehal Ganeshkar ◽  
Ajinkya Dhekne

2005 ◽  
Author(s):  
John W. Ruffner ◽  
Kaleb McDowell ◽  
Victor J. Paul ◽  
Harry J. Zywiol ◽  
Todd T. Mortsfield ◽  
...  

2011 ◽  
Author(s):  
Christopher Wickens ◽  
Julie Prinet ◽  
Shaun Hutchins ◽  
Nadine Sarter ◽  
Angelia Sebok

2019 ◽  
Vol 11 (01) ◽  
pp. 20-25
Author(s):  
Indra Saputra ◽  
Parulian Silalahi ◽  
Bayu Cahyawan ◽  
Imam Akbar

Bicycles are not equipped with the turn signal. For driving safety, a bicycle helmet with a turn signal is designed with voice rrecognition. It is using the Arduino Nano as a controller to control the ON and OFF of turn signal lights with voice commands. This device uses a Voice Recognition sensor and microphone that placed on a bicycle helmet. When the voice command is mentioned in the microphone, the Voice Recognition sensor will detect the command specified, the sensor will automatically read and send a signal to Arduino, then the turn signal will light up as instructed, the Arduino on the helmet will send an indicator signal via the Bluetooth Module. The device is able to detect sound with a percentage of 80%. The tool can work with a distance of <2 meters with noise <71 db.


Author(s):  
K. Shibazaki ◽  
H. Nozaki

In this study, in order to improve steering stability during turning, we devised an inner and outer wheel driving force control system that is based on the steering angle and steering angular velocity, and verified its effectiveness via running tests. In the driving force control system based on steering angle, the inner wheel driving force is weakened in proportion to the steering angle during a turn, and the difference in driving force is applied to the inner and outer wheels by strengthening the outer wheel driving force. In the driving force control (based on steering angular velocity), the value obtained by multiplying the driving force constant and the steering angular velocity,  that differentiates the driver steering input during turning output as the driving force of the inner and outer wheels. By controlling the driving force of the inner and outer wheels, it reduces the maximum steering angle by 40 deg and it became possible to improve the cornering marginal performance and improve the steering stability at the J-turn. In the pylon slalom it reduces the maximum steering angle by 45 deg and it became possible to improve the responsiveness of the vehicle. Control by steering angle is effective during steady turning, while control by steering angular velocity is effective during sharp turning. The inner and outer wheel driving force control are expected to further improve steering stability.


Sign in / Sign up

Export Citation Format

Share Document