scholarly journals Active Power Control of Wind Farm Equipped DFIG Wind Turbines with Energy Storage System

Author(s):  
M. L.V. Krishna Prasad
Author(s):  
PHANEENDRA. V ◽  
RAMA SEKHARA REDDY. M ◽  
VIJAYA KUMAR. M

Wind turbine generators (WTGs) are usually controlled to generate maximum electrical power from wind under normal wind conditions. With the increasing penetration of wind power into electric power grids, energy storage devices will be required to dynamically match the intermittency of wind energy. To meet the requirements of frequency and active power regulation, energy storage devices will be required to dynamically match the intermittency of wind energy. A novel twolayer constant-power control scheme for a wind farm equipped with doubly-fed induction generator (DFIG) wind turbines. Each DFIG wind turbine is equipped with a supercapacitor energy storage system (ESS) and is controlled by the low-layer WTG controllers and coordinated by a high-layer wind-farm supervisory controller (WFSC). The WFSC generates the active-power references for the low-layer WTG controllers according to the active-power demand from the grid operator; the low-layer WTG controllers then regulate each DFIG wind turbine to generate the desired amount of active power, where the deviations between the available wind energy input and desired active power output are compensated by the ESS. Simulation studies are carried out in PSCAD/EMTDC on a wind farm equipped with 15 DFIG wind turbines to verify the effectiveness of the proposed control scheme.


2021 ◽  
Vol 7 ◽  
pp. 1466-1476
Author(s):  
Jie Zhao ◽  
Yudi Fang ◽  
Yuqin He ◽  
Junjun Fang ◽  
Libin Wen ◽  
...  

2018 ◽  
Author(s):  
Mehdi Vali ◽  
Vlaho Petrović ◽  
Gerald Steinfeld ◽  
Lucy Y. Pao ◽  
Martin Kühn

Abstract. This paper studies a closed-loop wind farm control framework for active power control (APC) with a simultaneous reduction of wake-induced structural loads within a fully developed wind farm flow interacting with the atmospheric boundary layer. The main focus is on a classical feedback control, which features a simple control architecture and a practical measurement system that are realizable for real-time control of large wind farms. We demonstrate that the wake-induced structural loadings of the downstream turbines can be alleviated, while the wind farm power production follows a reference signal. A closed-loop APC is designed first to improve the power tracking performance against wake-induced power losses of the downwind turbines. Then, the non-unique solution of APC for the wind farm is exploited for aggregated structural load alleviation. The axial induction factors of the individual wind turbines are considered as control inputs to limit the power production of the wind farm or to switch to greedy control when the demand exceeds the power available in the wind. Furthermore, the APC solution domain is enlarged by an adjustment of the power set-points according to the locally available power at the waked wind turbines. Therefore, the controllability of the wind turbines is improved for rejecting the intensified load fluctuations inside the wake. A large-eddy simulation model is employed for resolving the turbulent flow, the wake structures and its interaction with the atmospheric boundary layer. The applicability and key features of the controller are discussed with a wind farm example consisting of 3 × 4 turbines with different wake interactions at each row. The performance of the proposed APC is evaluated using the accuracy of the wind farm power tracking and the wake-induced damage equivalent fatigue loads of the towers of the individual wind turbines.


Sign in / Sign up

Export Citation Format

Share Document