scholarly journals DC Micro Grid Connected Hybrid Energy Storage Structure with Renewable Energy Sources based on High Rating Super Capacitor

Author(s):  
Md. Akram Alam
Author(s):  
Peter Anuoluwapo Gbadega ◽  
Olufunke Abolaji Balogun

There is a continuous global need for more energy, which must be cleaner than energy produced from the conventional generation technologies. As such, this need has necessitated the increasing penetration of distributed generation technologies and primarily on renewable energy sources. This paper presents a dynamic modeling and control strategy for a sustainable micro-grid, principally powered by multiple renewable energy sources (solar energy, wind energy and Fuel cell), micro sources (such as diesel generator, micro-gas turbine etc.) and energy storage scheme. More importantly, a current-source-interface, multiple-input dc-dc converter is utilized to coordinate the sustainable power sources to the main dc bus. Thus, for tracking maximum power available in solar energy, maximum power point tracking algorithm is applied. The proposed system is designed to meet load demand, manage power flow from various sources, inject excess power into the grid, and charge the battery from the grid as needed. More so, the proposed converter architecture has reduced number of power conversion stages with less component count, and reduced losses compared to existing grid-connected hybrid systems. This improves the efficiency and reliability of the system. The utilization of energy storage is essential owing to the intermittent nature of the renewable energy sources and the consequent peak power shift between the sources and the load. Following this further, a supervisory control system is designed to handle various changes in power supply and power demand by managing power intermittency, power peak shaving, and long-term energy storage. The entire hybrid system is described given along with comprehensive simulation results that reveal the feasibility of the whole scheme. The system model is designed and simulated in MATLAB SimPowerSystem in order to verify the effectiveness of the proposed scheme.


The conventional AC/DC Railway Traction Systems are undergoing number of improvements. Thanks to modern technologies such as Renewable Energy Systems (RES), Energy Storage Systems (ESS) and Hybrid Energy Storage Systems (HESS). At present the traction transformers cater electric supply to traction motors and auxiliary loads which may not be adequate enough to meet demands. Furthermore in the event of failure of traction supply, the alternative source of supply is required. This papers suggests a noval method of feeding auxiliary loads through the integration of RES and ESS. Solar and Wind power are vital renewable energy sources. The pros and cons of proposed method are also discussed in this paper.


There are many renewable energy sources in nature today. The most commonly used of these are solar, wave, wind and flow energy. The weakest aspect of these renewable energy sources in nature is that the amount of energy produced depends on the nature conditions. The power generation capacities of these energy sources depending on the weather conditions in order to more stable them are necessary to combine. By combining more than one renewable energy source, a hybrid power generation system is created. Hybrid energy storage units are added to this hybrid power generation system to ensure persistence of energy. In this study, sea flow energy and offshore wind energy are combined and a hybrid power generation system has been created. In addition, a hybrid energy storage unit consisting of a battery and ultracapacitor has been created in order to ensure the persistence of the energy produced. All two hybrid units were simulated using MATLAB/Simulink program. By integrating these systems with each other, their dynamic behaviors were investigated under possible working conditions. The results of the simulation show that the hybrid energy storage unit supports the wind and sea flow energy.


Sign in / Sign up

Export Citation Format

Share Document