scholarly journals Intelligent Traffic Control System with Priority to Emergency Vehicles

Author(s):  
Arshiya .

In static road dividers the number of lanes on either side of the road is fixed and cannot be extended. This can be a major problem during peak traffic hours. The situation is abysmal when emergency vehicles are required to wait for other vehicles to give way at traffic intersections. This causes large time delays and may affect the emergency case. These traffic issues faced by emergency vehicles and daily commuters can be avoided by using this proposed traffic control system based on image processing and IoT. As a result, this project successfully analyzes and implements an Intelligent traffic control system with priority given to emergency vehicles.

Author(s):  
M Vaishnavi

This paper illustrates the circuitry and proof of concept of a novel density based traffic mitigating system for the vehicles. The intention of this paper is to make an adaptive signalling system, which can be optimally used in real-time. This project is accomplished with the help of NVIDIA Jetson Nano and utilizes python for image processing as open source in order to measure the size of the traffic on the road.


Author(s):  
Kenneth Akpado ◽  
Samuel Usoro ◽  
Nneka Ezeani

Emergency Vehicles (EV) such as ambulances, fire fighting vehicles, Road safety vehicles and other emergency vehicles encounter delays on their missions at traffic light control points due to traffic jams. The direct consequence of these delays results in unwarranted loss of lives and properties.  This research work proposes and implements an improved traffic control system with preference to emergency vehicles leveraging RFID technology and a novel Dynamic Traffic Sequence Algorithm (DTSA). Atmega 328 was used to actualize the novel DTSA, control the RFID and the entire traffic control system. The distance of RFID signal transmitted by the emergency vehicle was determined by physically measuring the distance of clearer signal obtained at various distances from the test bed. MATLAB was used to plot the response time of the RFID, thereby helping in the choice of RFID used. It was observed at 100 meters distance between the RFID transmitter in the emergency vehicle (EV) and the traffic light system, a clearer signal was obtained. Therefore at 100 meters the emergency vehicle will be detected and the traffic system will reset its normal routine to give right of way to the particular lane that the emergency vehicle is detected. Comparing the old and the new system it was observed that in the new system the EV will be 12minutes faster than the EV in the old system. From the result obtained, the RFID best suited for this application is active RFID. The results obtained proved that the system will effectively mitigate and almost completely eradicate the delay encountered by emergency vehicles at traffic control points.  The system will be deployed in any many cities in Nigeria that have traffic control systems installed.


2020 ◽  
pp. 1-1
Author(s):  
Gour Karmakar ◽  
Abdullahi Chowdhury ◽  
Joarder Kamruzzaman ◽  
Iqbal Gondal

Author(s):  
Dr. M. Varadharaj

Present Traffic Light Controller (TLC) relies upon micro-controller and microchip. These TLC have restrictions as they are depend on pre-portrayed gear, which is filling in with respect  to the program that doesn't have the versatility of adjustment on continuous reason. Owing to fixed time spans, orange and red signal’s holding up time is more and vehicle uses more fuel. To make traffic light leadership progressively beneficial, we abuse the advancement of new procedure called as “Density based traffic control system with smart sensing of emergency vehicles”. It is constructed mainly by using Magnetic Sensors for real world environment and by using IR modules for Model. The main objective of our project is to clear traffic efficiently by effective usage of the green signal time. In this system the density of the vehicle in a particular lane is obtained by the number of magnetic sensors kept in the road side which produces output signal with respect to the density of the traffic. Thus produced output signal is further processed by ARM microcontroller and according to the density obtained by the magnetic sensors the countdown time of the green signal is varied by the microcontroller and hence the usage of green signal even after all the vehicle pass by are prevented. In addition to this system our system also senses the emergency vehicle like ambulance that approaches the signal by detecting the RF signal transmitted by the Ambulance or other emergency vehicle with the help of RF receivers that kept at the road side and halts all the vehicles by putting red signal for all the four sides of road and puts special ‘green jeep signal’ for the emergency vehicle to pass by hence our system provide way for emergency vehicle. It can also prioritize the emergency vehicle with the help of RF transmitter and receiver. As the signalling board receives the RF signal, it turns the Corresponding lane ON, thus clearing the route for the emergency vehicle. DSS also analyses the pollution levels by placing a check over the vehicle emissions at the junctions. When the priorities of any two lanes clash, pollution levels are taken into account to provide the signals for them in turns. The gas sensors are fitted onto the signalling boards which help in calculating the pollutant levels.


Sign in / Sign up

Export Citation Format

Share Document