scholarly journals Identification of leaf rust resistance genes i n selected Argentinean bread wheat cultivars by gene postulation and molecular markers

Author(s):  
Leonardo Sebastián Vanzetti ◽  
Pablo Campos ◽  
Melina Demichelis ◽  
Lucio Andres Lombardo ◽  
Paola Romina Aurelia ◽  
...  
Crop Science ◽  
2008 ◽  
Vol 48 (2) ◽  
pp. 507-516 ◽  
Author(s):  
Sewalem A. Mebrate ◽  
Heinz-W. Dehne ◽  
Klaus Pillen ◽  
Erich-C. Oerke

Plant Disease ◽  
2001 ◽  
Vol 85 (2) ◽  
pp. 155-158 ◽  
Author(s):  
J. A. Kolmer

In 1998, leaf rust of wheat (Triticum aestivum), caused by Puccinia triticina, was widespread throughout the prairies of western Canada. Warm summer temperatures with frequent dew periods favored spread of the disease in wheat fields in Manitoba and Saskatchewan. The Canada Prairie Spring wheat cultivars (AC Vista, AC Foremost, AC Crystal) were susceptible to leaf rust, while the bread wheat cultivars with leaf rust resistance genes Lr16 and Lr13 or Lr34 (AC Majestic, AC Domain, AC Barrie) had high to moderate levels of leaf rust infections. Bread wheat cultivars AC Cora, AC Minto, Pasqua, and McKenzie had trace to low levels of leaf rust infection. Thirty-four virulence phenotypes of P. triticina were identified on 16 Thatcher lines, which are near-isogenic for leaf rust resistance genes. Phenotypes with virulence to Lr16 increased to 25% of isolates in Manitoba and Saskatchewan in 1998. Forty-three isolates were also tested for virulence to plants with the adult plant resistance genes Lr12, Lr13, Lr34, and Lr13,34. Most isolates had virulence to Lr12 and Lr13. All isolates had lower infection type on adult plants with Lr34 compared with Thatcher.


2015 ◽  
Vol 4 (2) ◽  
pp. 55-62
Author(s):  
Ashraf M.M. Abdelbacki ◽  
Reda I. Omara ◽  
Nor E.K. Soliman ◽  
Mohammed A. Najeeb

Leaf rust, caused by Puccinia triticina is a common and widespread disease of bread wheat (Triticum aestivum L.), in Egypt. Host resistance is the most economical, effective and ecologically sustainable method for controlling the disease. Molecular markers help to determine leaf rust resistance genes (Lr genes) that may be present in a large group of wheat germplasm. The objective of this study was to evaluate and detect leaf rust resistance genes in Egyptian wheat cultivars. Ten out of fifteen cultivars were resistance to leaf rust disease in four locations i.e., Dakahlia, Kafr el-Sheikh, Beheira and Sharqia during seasons 2011/2012 and 2012/2013. As for, using specific SSR primers proved that Lr19 was present in five cultivars i.e., Sakha-95, Gemmeiza-9, Gemmeiza-10, Misr-1 and Misr-2. Lr21. Lr24, Lr47, and Lr51 were detected in all tested cultivars. These genes should be taken into consideration in wheat breeding programs for successful rust resistance. Furthermore these materials can be used as a parent for plant breeders to add new effective resistance genes to their breeding materials because of the dynamic change of leaf rust races which can breakdown the resistance.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
I. A. Imbaby ◽  
M. A. Mahmoud ◽  
M. E. M. Hassan ◽  
A. R. M. Abd-El-Aziz

Leaf rust, caused byPuccinia triticinaEriks., is a common and widespread disease of wheat (Triticum aestivumL.) in Egypt. Host resistance is the most economical, effective, and ecologically sustainable method of controlling the disease. Molecular markers help to determine leaf rust resistance genes (Lrgenes). The objective of this study was to identifyLrgenes in fifteen wheat cultivars from Egypt. Ten genes,Lr13,Lr19,Lr24,Lr26,Lr34,Lr35 Lr36,Lr37,Lr39, andLr46, were detected in fifteen wheat cultivars using various molecular markers. The most frequently occurring genes in fifteen Egyptian wheat cultivars wereLr13,Lr24,Lr34, andLr36identified in all the cultivars used, followed byLr26andLr35(93%),Lr39(66%),Lr37(53%), andLr46(26.6%) of the cultivars, and finallyLr19was present in 33.3% of cultivars. It is concluded that there was a good variation inLrgenes carried by wheat cultivars commercially grown in Egypt. Therefore, strategies for deploying resistance genes to prolong effective disease resistance are suggested to control wheat leaf rust disease.


2019 ◽  
Vol 14 (1) ◽  
pp. 327-334 ◽  
Author(s):  
Agnieszka Tomkowiak ◽  
Roksana Skowrońska ◽  
Alicja Buda ◽  
Danuta Kurasiak-Popowska ◽  
Jerzy Nawracała ◽  
...  

AbstractTen leading wheat cultivars originating from the Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute (Poland) and the Department of Gene Bank (Czech Republic) were used to establish a field experiment in 2017 and 2018 at the Dłoń Experimental Farm. The analyzed wheat genotypes were characterized by diversified field resistance to leaf rust. Jubilatka, Thatcher and Sparta were the most resistant cultivars in field conditions in both 2017 and 2018. The aim of the work was to identify the Lr11, L13, Lr16 and Lr26 genes encoding resistance to leaf rust using molecular SSR markers (wmc24, wmc261, Xgwm630, Xwmc764 and P6M12) and to develop multiplex PCR conditions to accelerate identification of these genes. Markers of three leaf rust resistance genes have been identified simultaneously in these cultivars. Jubilatka, Thatcher and Sparta cultivars may serve as a good source of the analyzed leaf rust resistance genes. In addition, multiplex PCR conditions have been developed for the simultaneous identification of the Lr11 and Lr16 and Lr11 and Lr26 gene pairs.


2011 ◽  
Vol 33 (4) ◽  
pp. 550-558 ◽  
Author(s):  
Fariba Rafiei Boroujeni ◽  
Ahmad Arzani ◽  
Farzad Afshari ◽  
Mohammad Torabi

Sign in / Sign up

Export Citation Format

Share Document