An Optimized Unmanned Aerial System for Bridge Inspection

Author(s):  
Cheng-Hsuan Yang ◽  
Ming-Chang Wen ◽  
Yi-Chu Chen ◽  
Shih-Chung Kang
2019 ◽  
Vol 4 (4) ◽  
pp. 72
Author(s):  
Sattar Dorafshan ◽  
Robert J. Thomas ◽  
Calvin Coopmans ◽  
Marc Maguire

Small unmanned aerial system(s) (sUAS) are rapidly emerging as a practical means of performing bridge inspections. Under the right condition, sUAS assisted inspections can be safer, faster, and less costly than manned inspections. Many Departments of Transportation in the United States are in the early stages of adopting this emerging technology. However, definitive guidelines for the selection of equipment for various types of bridge inspections or for the possible challenges during sUAS assisted inspections are absent. Given the large investments of time and capital associated with deploying a sUAS assisted bridge inspection program, a synthesis of authors experiences will be useful for technology transfer between academics and practitioners. In this paper, the authors list the challenges associated with sUAS assisted bridge inspection, discuss equipment and technology options suitable for mitigating these challenges, and present case studies for the application of sUAS to several specific bridge inspection scenarios. The authors provide information to sUAS designers and manufacturers who may be unaware of the specific challenges associated with sUAS assisted bridge inspection. As such, the information presented here may reveal the demands in the design of purpose-built sUAS inspection platforms.


2014 ◽  
Author(s):  
Katie Feltman ◽  
F. Richard Ferraro ◽  
Kyle Bernhardt ◽  
Hannah Hill

2018 ◽  
Author(s):  
Mohammed S. Mayeed ◽  
Franklin Woods ◽  
Alexander Bryant

2019 ◽  
Vol 3 ◽  
pp. 1255
Author(s):  
Ahmad Salahuddin Mohd Harithuddin ◽  
Mohd Fazri Sedan ◽  
Syaril Azrad Md Ali ◽  
Shattri Mansor ◽  
Hamid Reza Jifroudi ◽  
...  

Unmanned aerial systems (UAS) has many advantages in the fields of SURVAILLANCE and disaster management compared to space-borne observation, manned missions and in situ methods. The reasons include cost effectiveness, operational safety, and mission efficiency. This has in turn underlined the importance of UAS technology and highlighted a growing need in a more robust and efficient unmanned aerial vehicles to serve specific needs in SURVAILLANCE and disaster management. This paper first gives an overview on the framework for SURVAILLANCE particularly in applications of border control and disaster management and lists several phases of SURVAILLANCE and service descriptions. Based on this overview and SURVAILLANCE phases descriptions, we show the areas and services in which UAS can have significant advantage over traditional methods.


Author(s):  
Matthew B. Galles ◽  
Noah H. Schiller ◽  
Kasey A. Ackerman ◽  
Brett A. Newman

10.29007/zw9k ◽  
2020 ◽  
Author(s):  
Kazuhide Nakata ◽  
Kazuki Umemoto ◽  
Kenji Kaneko ◽  
Ryusuke Fujisawa

This study addresses the development of a robot for inspection of old bridges. By suspending the robot with a wire and controlling the wire length, the movement of the robot is realized. The robot mounts a high-definition camera and aims to detect cracks on the concrete surface of the bridge using this camera. An inspection method using an unmanned aerial vehicle (UAV) has been proposed. Compared to the method using an unmanned aerial vehicle, the wire suspended robot system has the advantage of insensitivity to wind and ability to carry heavy equipments, this makes it possible to install a high-definition camera and a cleaning function to find cracks that are difficult to detect due to dirt.


2018 ◽  
Vol 56 (1) ◽  
pp. 100-105
Author(s):  
Y. Fujiwara ◽  
K. Umezu ◽  
K. Tamaki ◽  
K. Tanno

2020 ◽  
Vol 3 (2) ◽  
pp. 58-73
Author(s):  
Vijay Bhagat ◽  
Ajaykumar Kada ◽  
Suresh Kumar

Unmanned Aerial System (UAS) is an efficient tool to bridge the gap between high expensive satellite remote sensing, manned aerial surveys, and labors time consuming conventional fieldwork techniques of data collection. UAS can provide spatial data at very fine (up to a few mm) and desirable temporal resolution. Several studies have used vegetation indices (VIs) calculated from UAS based on optical- and MSS-datasets to model the parameters of biophysical units of the Earth surface. They have used different techniques of estimations, predictions and classifications. However, these results vary according to used datasets and techniques and appear very site-specific. These existing approaches aren’t optimal and applicable for all cases and need to be tested according to sensor category and different geophysical environmental conditions for global applications. UAS remote sensing is a challenging and interesting area of research for sustainable land management.


Sign in / Sign up

Export Citation Format

Share Document