scholarly journals Prolonging Network Survivability and Optimizing Energy Consumption in Heterogeneous Wireless Sensor Networks

2021 ◽  
Vol 14 (4) ◽  
pp. 166-176
Author(s):  
Vasudha Bahl ◽  
◽  
Anoop Bhola ◽  
2018 ◽  
Vol 7 (2.7) ◽  
pp. 725
Author(s):  
V Appala Raju ◽  
V Sri Harsha ◽  
N Bhanu Deepthi ◽  
N Prasanth

Wireless sensor networks play a key role in communication. They are comprised of hundreds sensor nodes with limited energy. So energy utilization major issue in WSN for performing the given task. So most of the protocols are concentrate on energy consumption .Zonal mechanism is one popular WSN routing technique.    In this work we are mostly concentrating on optimization of stable election protocol for heterogeneous wireless sensor networks and compare the performance with LEACH and SEP. Most of the work to find stability period, alive nodes and dead nodes, throughput in LEACH, SEP, ZSEP.  We are stimulated in MATLAB tool. Stimulation results prove that improvement in stability period and through put is better in ZSEP when compared to LEACH and SEP.  


Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 125 ◽  
Author(s):  
Liquan Zhao ◽  
Qi Tang

In the Threshold-Sensitive Stable Election Protocol, sensors are randomly deployed in the region without considering the balanced energy consumption of nodes. If a node that has been selected as a cluster head is located far away from the base station, it will affect the efficiency of the network due to its early death. This paper proposes an improved energy efficient routing protocol named Improved Threshold-Sensitive Stable Election protocol (ITSEP) for heterogeneous wireless sensor networks. Firstly, we use a node state transformation mechanism to control the number of cluster heads in high-density node areas. Secondly, the proposed protocol improves the threshold formula by considering the distance from the node to the base station, the number of neighbor nodes, its residual energy, and the average distance between nodes. In addition, an optimal route with minimum energy consumption for cluster heads has been selected throughout data transmission. Simulation results show that this algorithm has achieved a longer lifetime than the stable election protocol algorithm, modified stable election protocol algorithm, and threshold-sensitive stable election protocol algorithm for the heterogeneous wireless sensor network.


Author(s):  
Shuang Zhai ◽  
Zhihong Qian ◽  
Bingtao Yang ◽  
Xue Wang

In heterogeneous wireless sensor networks, the data collection method based on compressed sensing technology is susceptible to packet loss and noise, which leads to a decrease in data reconstruction accuracy in unreliable links. Combining compressed sensing and matrix completion, we propose a clustering optimization algorithm based on structured noise matrix completion, in which the cluster head transmits the compressed sampling data and compression strategy to the base station. The algorithm we proposed can reduce the energy consumption of the node in the process of data collection, redundant data and transmission delay. The rank-1 matrix completion algorithm constructs an extremely sparse observation matrix, which is adopted by the sink node to complete the reconstruction of the whole network data. Simulation experiments show that the proposed algorithm reduces network transmission data, balances node energy consumption, improves data transmission efficiency and reconstruction accuracy, and extends the network life cycle.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1543 ◽  
Author(s):  
Erdong Yuan ◽  
Liejun Wang ◽  
Shuli Cheng ◽  
Naixiang Ao ◽  
Qingrui Guo

The secure transmission of data within a network has received great attention. As the core of the security management mechanism, the key management scheme design needs further research. In view of the safety and energy consumption problems in recent papers, we propose a key management scheme based on the pairing-free identity based digital signature (PF-IBS) algorithm for heterogeneous wireless sensor networks (HWSNs). Our scheme uses the PF-IBS algorithm to complete message authentication, which is safer and more energy efficient than some recent schemes. Moreover, we use the base station (BS) as the processing center for the huge data in the network, thereby saving network energy consumption and improving the network life cycle. Finally, we indirectly prevent the attacker from capturing relay nodes that upload data between clusters in the network (some cluster head nodes cannot communicate directly). Through performance evaluation, the scheme we proposed reasonably sacrifices part of the storage space in exchange for entire network security while saving energy consumption.


Sign in / Sign up

Export Citation Format

Share Document