scholarly journals Glaucoma Detection using Bi-Dimensional Empirical Mode Decomposition from Retinal Fundus Images

2021 ◽  
Vol 14 (6) ◽  
pp. 249-257
2016 ◽  
Author(s):  
Akshaya Ramaswamy ◽  
Keerthi Ram ◽  
Mohanasankar Sivaprakasam

2015 ◽  
Author(s):  
Akshaya Ramaswamy ◽  
Keerthi Ram ◽  
Niranjan Joshi ◽  
Mohanasankar Sivaprakasam

2020 ◽  
Vol 7 (4) ◽  
pp. 11-15
Author(s):  
Diwakaran ◽  
S.Sheeba Jeya Sophia

Glaucoma - a disease which causes damage to our eye's optic nerve and subsequently blinds the vision. This occurs due to increased intraocular pressure (IOP) which causes the damage of optic nerve axons at the back of the eye, with eventual deterioration of vision. Presently, many works have been done towards automatic glaucoma detection using Fundus Images (FI) by extracting structural features. Structural features can be extracted from optic nerve head (ONH) analysis, cup to disc ratio (CDR) and Inferior, Superior, Nasal, Temporal (ISNT) rule in Fundus Image for glaucoma assessment.This survey presents various techniques for the early detection of glaucoma. Among the various techniques, retinal image-based detection plays a major role as it comes under non-invasive methods of detection. Here, a review and study were conducted for the different techniques of glaucoma detection using retinal fundus images. The objective of this survey is to obtain a technique which automatically analyze the retinal images of the eye with high efficiency and accuracy


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 602
Author(s):  
Muhammad Aamir ◽  
Muhammad Irfan ◽  
Tariq Ali ◽  
Ghulam Ali ◽  
Ahmad Shaf ◽  
...  

Glaucoma, an eye disease, occurs due to Retinal damages and it is an ordinary cause of blindness. Most of the available examining procedures are too long and require manual instructions to use them. In this work, we proposed a multi-level deep convolutional neural network (ML-DCNN) architecture on retinal fundus images to diagnose glaucoma. We collected a retinal fundus images database from the local hospital. The fundus images are pre-processed by an adaptive histogram equalizer to reduce the noise of images. The ML-DCNN architecture is used for features extraction and classification into two phases, one for glaucoma detection known as detection-net and the second one is classification-net used for classification of affected retinal glaucoma images into three different categories: Advanced, Moderate and Early. The proposed model is tested on 1338 retinal glaucoma images and performance is measured in the form of different statistical terms known as sensitivity (SE), specificity (SP), accuracy (ACC), and precision (PRE). On average, SE of 97.04%, SP of 98.99%, ACC of 99.39%, and PRC of 98.2% are achieved. The obtained outcomes are comparable to the state-of-the-art systems and achieved competitive results to solve the glaucoma eye disease problems for complex glaucoma eye disease cases.


Sign in / Sign up

Export Citation Format

Share Document