scholarly journals BIODEGRADABLE SOLID LIPID MICROPARTICLES LOADED WITH DILTIAZEM HYDROCHLORIDE FOR ORAL DELIVERY: PREPARATION AND IN-VITRO/IN-VIVO EVALUATION

2011 ◽  
Vol 1 (1) ◽  
Author(s):  
Urmila Pilaniya
Author(s):  
Chukwuebuka Umeyor ◽  
Uchechukwu Nnadozie ◽  
Anthony Attama

This study seeks to formulate and evaluate a solid lipid nanoparticle-based, solidified micellar carrier system for oral delivery of cefepime. Cefepime has enjoyed a lot of therapeutic usage in the treatment of susceptible bacterial infections; however, its use is limited due to its administration as an injection only with poor patient compliance. Since oral drug administration encourage high patient compliance with resultant effect in improved therapy, cefepime was formulated as solid lipid microparticles for oral delivery using the concept of solidified micellar carrier system. The carrier system was evaluated based on particle yield, particle size and morphology, encapsulation efficiency (EE %), and thermal analysis using differential scanning calorimeter (DSC). Preliminary microbiological studies were done using gram positive and negative bacteria. In vitro release study was performed using biorelevant media, while in vivo release study was performed in white albino rats. The yield of solid lipid microparticles (SLM) ranged from 84.2 – 98.0 %. The SLM were spherical with size ranges of 3.8 ± 1.2 to 42.0 ± 1.4 µm. The EE % calculated ranged from 83.6 – 94.8 %. Thermal analysis showed that SLM was less crystalline with high potential for drug entrapment. Microbial studies showed that cefepime retained its broad spectrum anti-bacterial activity. In vitro release showed sustained release of cefepime from SLM, and in vivo release study showed high concentration of cefepime released in the plasma of study rats. The study showed that smart engineering of solidified micellar carrier system could be used to improve oral delivery of cefepime.


2014 ◽  
Vol 24 (1) ◽  
pp. 69-77 ◽  
Author(s):  
E.E. Chinaeke ◽  
S.A. Chime ◽  
F.C. Kenechukwu ◽  
C.C. Müller-Goymann ◽  
A.A. Attama ◽  
...  

Author(s):  
Kishan V. ◽  
Sandeep V ◽  
Narendar D ◽  
Arjun N

The objective of this study was to develop and evaluate lacidipine (LD) loaded solid lipid nanoparticles (LD-SLNs) for improving the oral bioavailability. LD-SLNs were prepared in two steps. First step was hot homogenization and next by ultrasonication method, using triglycerides (tripalmitin and tristearin), monoglyceride and surfactants (Poloxamer 188 and egg lecithin E80). The prepared LD-SLNs were characterized for particle size, PDI, zeta potential, drug content, entrapment efficiency (EE %).         In vitro drug release studies using a dialysis bag method in 0.1N HCl and pH 6.8 phosphate buffer were conducted. In addition, long-term physical stability of the optimized SLNs was investigated at refrigerated and room temperature for 60 days. FTIR and DSC studies revealed that no interaction between the drug and lipids. LD-SLNs prepared with Dynasan-116 (F3), having the size of 141.86nm, PDI of 0.293, ZP of -22.3 m with 94.75% of EE was optimized and was stable for 60days. Scanning electron microscopic studies showed nearly spherical shaped particles. Further, pharmacokinetic studies were conducted in wistar rats. The relative bioavailability of LD in SLNs was 2.03 times when compared with that of the LD suspension. The results are indicative of SLNs as suitable lipid based carrier system for improving the oral bioavailability of LD. 


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2013 ◽  
Vol 10 (6) ◽  
pp. 656-666 ◽  
Author(s):  
Sandipan Dasgupta ◽  
Surajit Ghosh ◽  
Subhabrata Ray ◽  
Bhaskar Mazumder

Sign in / Sign up

Export Citation Format

Share Document