Development, in vitro and in vivo Evaluations of Solid-Lipid Microparticles based on Solidified Micellar Carrier System for Oral Delivery of Cefepime

Author(s):  
Chukwuebuka Umeyor ◽  
Uchechukwu Nnadozie ◽  
Anthony Attama

This study seeks to formulate and evaluate a solid lipid nanoparticle-based, solidified micellar carrier system for oral delivery of cefepime. Cefepime has enjoyed a lot of therapeutic usage in the treatment of susceptible bacterial infections; however, its use is limited due to its administration as an injection only with poor patient compliance. Since oral drug administration encourage high patient compliance with resultant effect in improved therapy, cefepime was formulated as solid lipid microparticles for oral delivery using the concept of solidified micellar carrier system. The carrier system was evaluated based on particle yield, particle size and morphology, encapsulation efficiency (EE %), and thermal analysis using differential scanning calorimeter (DSC). Preliminary microbiological studies were done using gram positive and negative bacteria. In vitro release study was performed using biorelevant media, while in vivo release study was performed in white albino rats. The yield of solid lipid microparticles (SLM) ranged from 84.2 – 98.0 %. The SLM were spherical with size ranges of 3.8 ± 1.2 to 42.0 ± 1.4 µm. The EE % calculated ranged from 83.6 – 94.8 %. Thermal analysis showed that SLM was less crystalline with high potential for drug entrapment. Microbial studies showed that cefepime retained its broad spectrum anti-bacterial activity. In vitro release showed sustained release of cefepime from SLM, and in vivo release study showed high concentration of cefepime released in the plasma of study rats. The study showed that smart engineering of solidified micellar carrier system could be used to improve oral delivery of cefepime.

Author(s):  
Raditya Iswandana ◽  
Kurnia Sari Setio Putri ◽  
Cindy Espreancelly Sandiata ◽  
Sisilia Triani ◽  
Santi Purna Sari ◽  
...  

Objectives Pectin, a natural polysaccharide, can be used as colon targeted drug delivery systems. Ionotropic gelation of pectin in the presence of certain divalent cations, such as calcium ions, protects drugs by producing insoluble hydrogels that can be used as a colon-targeted drug delivery carrier. In this study, calcium pectinate beads containing tetrandrine were made and were evaluated for in-vitro drug release and in-vivo study.Methods: Calcium pectinate beads were prepared by ionic gelation method with varied calcium chloride concentration (5%, 10%, and 15%). The best formula was coated with pH sensitive polymers, i.e. Eudragit L100-55, Eudragit L100, HPMCP (Hydroxypropylmethyl Cellulose Phthalate) HP-55 or CAP (Cellulose Acetate Phthalate).Results: Characterization results showed that the beads produced were quite spherical and have yellow-brownish color. After the coating process, beads were used in in-vitro drug release and targeted test. From in-vitro release study, beads coated with Eudragit L100 10% has shown good colon targeted dosage form with percent cumulative release 57.87%. This result also confirmed with the in-vivo test. Beads which were coated by Eudragit L100 10% could be found in the rat intestine.Conclusion: Formula 1 (5% calcium chloride concentration) was chosen as the best beads characterization. Formula 1C (5% beads coated with 10% Eudragit L100) showed an optimal protection from gastric acid in the in-vitro release study and able to deliver the beads to the intestine in the in-vivo targeted test.


2014 ◽  
Vol 24 (1) ◽  
pp. 69-77 ◽  
Author(s):  
E.E. Chinaeke ◽  
S.A. Chime ◽  
F.C. Kenechukwu ◽  
C.C. Müller-Goymann ◽  
A.A. Attama ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 149-158
Author(s):  
Guilherme A.G. Martins ◽  
Fabio S. Murakami ◽  
Mauro S. Oliveira ◽  
Ana F. Furian ◽  
Helen Treichel ◽  
...  

Objective: Atorvastatin (ATV) is effective in reducing total cholesterol and low-density lipoprotein levels. Furthermore, it produces pleiotropic effects in neurodegenerative conditions such as Parkinson's, Alzheimer's, and epilepsy. However, due to the effective defense system of the central nervous system (CNS), the development of new medicines for clinical conditions has proven difficult. In this context, nanotechnology was applied as a promising solution to promote drug vectorization to the brain. Methods: The solvent emulsification-diffusion method was used to develop nanoparticles (NPs) based on polylactic acid and coated with polysorbate 80 containing ATV. Quality-by-Design (QbD) was used in the optimization of nanoparticles production through the application of the experimental design Box-Behnken Design. Results: After optimizing the independent factors including sonication time, surfactant concentration and surfactant volume, the NPs presented physicochemical characteristics such as entrapment efficiency of 86.4 ± 2.4%, mean size of 225.2 ± 4.8 nm, and zeta potential of -14.4 ± 0.36 mV. In the in vitro release study, approximately 20% of the encapsulated ATV was released. Conclusion: The application of QbD was very useful in demonstrating its applicability in the nanotechnological pharmaceutical area for controlling and predicting the influence of the variables in the production of NPs. The NPs developed in this study presented adequate physicochemical characteristics, which is promising for future in vivo studies. The physicochemical characteristics included entrapment efficiency of 86.4 ± 2.4%, mean size of 225.2 ± 4.8 nm, and zeta potential of -14.4 ± 0.36 mV. In the in vitro release study, approximately 20% of the encapsulated ATV was released. The application of QbD was very useful in demonstrating its applicability in the nanotechnological pharmaceutical area for controlling and predicting the influence of the variables in the production of NPs. The NPs developed in this study presented adequate physicochemical characteristics, which is promising for future in vivo studies.


Author(s):  
JAGAN BAHEKAR ◽  
SHAILESH WADHER

Objective: This study was intended to investigate the potential of the colon specificity approach comprising of use of pH-sensitive and time-dependent polymers in combination for precise colonic release of Mesalamine or 5-Aminosalicylic acid (5-ASA). Methods: The extrusion and spheronization method, preferably employed in industry for allowing high dose capacity to formulate, was used to prepare drug pellets. The Wurster coating technique used for aqueous coatings of Eudragit NE 40D as an inner coat and Eudragit FS30D as outer coat. The changing pH media used for in vitro release study of optimization batches for both the coating levels. A scanning electron microscope (SEM) was used to evaluate coating thickness and surface morphology. Results: The pharmacokinetic parameters of formulation evaluated by in vivo study in rabbits revealed that the uncoated formulation released the drug too early in the gastrointestinal tract (GIT) with a mean Cmax of 1205.28±0.37 µg/ml at 2 h after administration, whereas desired lag time was achieved in case of coated pellets exhibiting mean Cmax 465.94±0.21 µg/ml and tmax of 8 h. Conclusion: The in vitro and in vivo release study divulge the reliability of approach involving the use of pH sensitivity and time dependency of polymer for drug release in a single formulation for the treatment of colonic diseases. Hence, the present study provides constructive results for colon targeting of 5-ASA pellets with industrially feasible processes.


Sign in / Sign up

Export Citation Format

Share Document