scholarly journals Cervical spine fractures in multiple injured patients in Kurdistan Region, Iraq

2021 ◽  
Vol 5 (1) ◽  

Objectives: The aim of study to describe the main types of cervical spine fractures presented to the emergency department and to illustrate the main aspects of management and outcome. Methods: This is a prospective study of 72 patients with cervical injury out of 932 male patients with history of multiple injuries. All patients with cervical spine injury were admitted within 1 week of injury and follow up thereafter by regular outpatient visit. Cervical spine injuries were diagnosed by full radiological assessment according to NEXUS criteria (plain x-ray with lateral, anteroposterior, odontoid views in addition to cervical spine C.T for indicated patients) and evaluated neurologically. Results: Mean age of patients at time of accident was 25 years ranging from 7-73years, 50% of them were in the third decade of life. Road traffic accidents constitute 58.3% of causes of cervical injury followed by fall from height (19.5%). Results has shown that mid and lower cervical spine injuries constitute 87.5% of all types of vertebra involved while upper cervical spine injuries constitute only 12.5% of them. Associated injuries were found in 42 patients (58.3%) and the most common associated injury was cerebral concussion. 50% of patients had no history of neural deficit at time of admission, while the others had neurological abnormalities (27.7%) of them with complete deficit at time of admission. The most common type of skeletal injury was wedge fracture (28 patients, 38.8%), followed by spinous process fracture and burst fracture (18 patients, 25% and 12 patients, 16.6%) respectively. Respiratory complications were the most common in our series (12 patients of 72, 16.6%) followed by an equal share of urinary tract infection and neck pain (7 patients, 9.7%). Conclusion: Traffic accident constitutes the main reason for cervical spine fractures followed by falls. Cervical spine fractures affect the younger age group with mean age of 25 year. A collar is sufficient treatment for more un displaced fractures. Seat belt is one of the restrains that shares in reduction of fatality and severity of cervical spine injuries.

Author(s):  
Calan Mathieson ◽  
Chris Barrett ◽  
Likhith Alakandy

The management of cervical spine fractures is a complex and fascinating topic. A multitude of descriptive terminologies and classification systems have been developed over the years in an attempt to better understand this heterogenous group of patients. Despite this however, there is often little consensus with regards to the best way to manage this population. This chapter will predominantly discuss the decision-making process involved in the management of cervical spine fractures. The goal of the spine surgeon in managing patients with acute cervical spine injury is to prevent secondary neurological injury, deformity, and pain by re-establishing stability if necessary. Assessing how to achieve this goal can be very challenging. The surgeon will be faced with many questions. Which patients should undergo surgical intervention? Which operation will best stabilize the spine? Which patients should be treated with a collar or a halo vest? Does the injury require reduction with traction initially? There are also questions of timing. When should the surgeon plan the proposed procedure?


1970 ◽  
Vol 33 (1) ◽  
pp. 54-59 ◽  
Author(s):  
John D. Loeser

✓ Therapy of cervical spine fractures is reviewed from the time of the Egyptians (4000 B.C.) to the present day. Immobilization has been practiced for slightly more than a century; devices for exerting traction upon the skull have been in use for 37 years. The Renaissance surgeon, Fabricus Hildanus, designed a tool for exerting traction upon the cervical vertebrae, but this method did not become popular. Until the 20th century, few physicians considered the therapy of this common injury.


2010 ◽  
pp. 276-286
Author(s):  
George Samandouras

Chapter 6.6 covers cervical spine injuries, including atlanto-occipital dislocation (AOD), occipital condyle fracture (OCF), fracture of the atlas: C1 (FOTA), fracture of the axis: C2 (FOAX), combination fractures: C1–C2, atlanto-axial instability (AAI), and subaxial cervical spine fractures.


2008 ◽  
Vol 47 (172) ◽  
Author(s):  
Amit Agrawal

Cervical spine injury is relatively rare, occurring in only 2% to 3% of patients with blunt traumawho undergo imaging studies. However, timely and accurate recognition of cervical spine injuryis essential for the optimal management of patients with blunt trauma as subsequent morbidity includesprolonged immobilization. Evaluation of cervical spine injuries should begin in the emergencydepartment and involves a combination of pediatric, trauma, orthopedic, and neurosurgeons fordefinitive management. Knowing which patients are at highest risk for injuries will undoubtedlyinfluence decisions on how aggressively to pursue a potential cervical spine injury and can be achievedby establishing a multidisciplinary team approach that provides cervical spine immobilization,assessment, and clearance. Implementation of such guidelines will decrease time for cervical spineclearance and incidence of missed injuries. In this article different aspects of cervical spine injuriesand cervical spine clearance protocols are reviewed.Key words: cervical, injury, trauma, spine, vertebrae


2020 ◽  
Vol 49 (Supplement_1) ◽  
pp. i1-i8
Author(s):  
A M Tarawneh ◽  
S Taqvi ◽  
K M I Salem ◽  
O Sahota

Abstract Introduction Cervical spine fractures are particularly prevalent in older people and commonly occur following a fall from standing height or less, in the presence of degenerative spinal disease. Atlanto-axial complex and odontoid process injuries are the most frequent type of fractures and are potentially life threatening. Published in-hospital and 1-year mortality rates in older people are eightfold higher than in younger patients. The aim of this study was to identify the incidence and characteristics of cervical spine fractures in older people presenting to a regional spine centre. Methods Clinical records and radiographs were retrospectively reviewed using our institutional registry covering a 5-year period. Data included patient age, gender, mechanism of trauma, level of fracture, stability of the fracture, treatment modality, imaging modality, and mortality rates. Results A total of 209 patients above the age of 70 with cervical spine fractures were treated in our centre from 2015-2019. The mean age of the patients at the time of injury was (82.4 ±7.5) years with the majority (n=117; 56%) being females. One-hundred fifty-one patients (72.2%) experienced fractures in the atlanto-axial complex. Particularly, Dens fractures were the most commonly reported fracture (n=119; 56.9%). Most of the patients encountered stable cervical spine fractures (n=181; 86.6%) and these were managed by external immobilization with hard collar or halo vest. Mechanism of trauma was divided into two main categories, low energy and high energy. Low energy trauma was the most common cause that lead to cervical spine fractures (n=169; 80.9%), compared to high energy trauma (n=40; 19.1%). CT scan and X-ray were the main imaging modalities utilized to detect cervical spine fractures. Whereas, MRI was only utilized in (n=51; 24.4%). Overall mortality rate was (n=17; 8.1%) at 30 days. Out of which (n=1; 5.9%) was in a patient who was surgically treated while the remaining (n=16; 94.1%) were in those treated conservatively. Conclusions Cervical spine injuries in older people are clinically important. Low energy trauma particularly falls, were the main mechanism of cervical spine injury. Upper cervical spine injuries, mainly C2, is the most common cervical spine fracture and were most commonly detected using CT scan. External immobilization was our treatment of choice for most of the cervical spine injuries in the older people. These patients are very similar with respect to mean age, mechanism of injury and 30 days mortality rate as hip fracture patients.


1989 ◽  
Vol 70 (6) ◽  
pp. 884-892 ◽  
Author(s):  
Richard D. Bucholz ◽  
K. Charles Cheung

✓ The indications for surgical fusion, as opposed to halo fixation, in the management of cervical spine injury are still unclear. At St. Louis University Medical Center a conservative protocol has been adopted to treat almost all cervical spine fractures with halo fixation. To determine what factors have contributed to failure of halo fixation, the records and radiographs of all patients with cervical spine injuries who were treated at that institution between 1984 and 1986 were reviewed. During this interval, 124 patients were treated, consisting of 93 men and 31 women between 6 and 94 years old. Of these, 15 (12%) had cervical fusion without preoperative halo device application. This group included eight patients with old injuries and delayed diagnosis, three with nonreducible locked facets, and four with miscellaneous indications. The remaining 109 patients were treated with halo vests. Four died before completing the 3-month standard treatment. Of those completing the treatment, 48 had C1–2 level injuries and 57 had C3–T1 level injuries. Sixteen patients (15%) failed their halo treatments and required surgical fusion: eight while still in halo fixation and eight after they had completed treatment with a halo device. Failure of halo treatment was indicated by recurrent dislocation in 13 patients and increased neurological deficit in three. Thirteen of the patients who failed treatment had C3–T1 injuries and three had C1–2 injuries. Of 27 patients with odontoid fractures, only two (7.4%) failed halo fixation. There were no failures in 11 patients with hangman's fractures. Of the 57 patients with C3–T1 injuries, 13 (23%) failed treatment, nine of whom had locked or “perched” facets. The factors causing failure of halo fixation were analyzed. The overall success rate was 85%, suggesting that the halo vest can be used to treat most patients with cervical spine injuries. Under certain circumstances (in the presence of old injuries, difficult reduction, or locked or “perched” facets), surgery may be indicated to avoid unnecessary delay in definitive management.


CJEM ◽  
2014 ◽  
Vol 16 (02) ◽  
pp. 131-135 ◽  
Author(s):  
Hendrik P. Van Zyl ◽  
James Bilbey ◽  
Alan Vukusic ◽  
Todd Ring ◽  
Jennifer Oakes ◽  
...  

ABSTRACT Objective: Emergency physicians are expected to rule out clinically important cervical spine injuries using clinical skills and imaging. Our objective was to determine whether emergency physicians could accurately rule out clinically important cervical spine injuries using computed tomographic (CT) imaging of the cervical spine. Method: Fifteen emergency physicians were enrolled to interpret a sample of 50 cervical spine CT scans in a nonclinical setting. The sample contained a 30% incidence of cervical spine injury. After a 2-hour review session, the participants interpreted the CT scans and categorized them into either a suspected cervical spine injury or no cervical spine injury. Participants were asked to specify the location and type of injury. The gold standard interpretation was the combined opinion of two staff radiologists. Results: Emergency physicians correctly identified 182 of the 210 abnormal cases with cervical spine injury. The sensitivity of emergency physicians was 87% (95% confidence interval [CI] 82–91), and the specificity was 76% (95% CI 74–77). The negative likelihood ratio was 0.18 (95% CI 0.12–0.25). Conclusion: Experienced emergency physicians successfully identified a large proportion of cervical spine injuries on CT; however, they were not sufficiently sensitive to accurately exclude clinically important injuries. Emergency physicians should rely on a radiologist review of cervical spine CT scans prior to discontinuing cervical spine precautions.


2020 ◽  
Vol 35 (5) ◽  
pp. 524-527
Author(s):  
Allison G. McNickle ◽  
Paul J. Chestovich ◽  
Douglas R. Fraser

AbstractBackground:Cadaveric and older radiographic studies suggest that concurrent cervical spine fractures are rare in gunshot wounds (GSWs) to the head. Despite this knowledge, patients with craniofacial GSWs often arrive with spinal motion restriction (SMR) in place. This study quantifies the incidence of cervical spine injuries in GSWs to the head, identified using computerized tomography (CT). Fracture frequency is hypothesized to be lower in self-inflicted (SI) injuries.Methods:Isolated craniofacial GSWs were queried from this Level I trauma center registry from 2013-2017 and the US National Trauma Data Bank (NTDB) from 2012–2016 (head or face abbreviated injury scale [AIS] >2). Datasets included age, gender, SI versus not, cervical spine injury, spinal surgery, and mortality. For this hospital’s data, prehospital factors, SMR, and CTs performed were assessed. Statistical evaluation was done with Stata software, with P <.05 significant.Results:Two-hundred forty-one patients from this hospital (mean age 39; 85% male; 66% SI) and 5,849 from the NTDB (mean age 38; 84% male; 53% SI) were included. For both cohorts, SI patients were older (P < .01) and had increased mortality (P < .01). Overall, cervical spine fractures occurred in 3.7%, with 5.4% requiring spinal surgery (0.2% of all patients). The frequency of fracture was five-fold greater in non-SI (P < .05). Locally, SMR was present in 121 (50.2%) prior to arrival with six collars (2.5%) placed in the trauma bay. Frequency of SMR was similar regardless of SI status (49.0% versus 51.0%; P = not significant) but less frequent in hypotensive patients and those receiving cardiopulmonary resuscitation (CPR). The presence of SMR was associated with an increased use of CT of the cervical spine (80.0% versus 33.0%; P < .01).Conclusion:Cervical spine fractures were identified in less than four percent of isolated GSWs to the head and face, more frequently in non-SI cases. Prehospital SMR should be avoided in cases consistent with SI injury, and for all others, SMR should be discontinued once CT imaging is completed with negative results.


1995 ◽  
Vol 16 (1) ◽  
pp. 28-28
Author(s):  
Jeffrey R. Avner

Although rare in pediatrics, cervical spine injuries still are associated with serious morbidity, disability, and mortality. Many of these injuries are exacerbated by inadequate neck immobilization or improper manipulation. Thus, the physician should be aware of which children are at risk for cervical spine injury and how to assess these patients properly. To find clinical markers that identify children who actually have cervical spine injuries, Rachesky et al reviewed 2133 cervical spine radiographs obtained in pediatric patients during a 7-year period. Of these children, 25 (1.2%) had abnormalities confirmed on radiographs. The incidence of injury increased with age; only four of the children who had cervical spine injuries were less than 8 years old.


2017 ◽  
Vol 2017 ◽  
pp. 1-3
Author(s):  
Amit Frenkel ◽  
Yair Binyamin ◽  
Evgeni Brotfain ◽  
Leonid Koyfman ◽  
Aviel Roy-Shapira ◽  
...  

We present a case of a 51-year-old man who was injured in a bicycle accident. His main injury was an unstable fracture of the cervical and thoracic vertebral column. Several hours after his arrival to the hospital the patient underwent open reduction and internal fixation (ORIF) of the cervical and thoracic spine. The patient was hospitalized in our critical care unit for 99 days. During this time patient had several episodes of severe bradycardia and asystole; some were short with spontaneous return to sinus and some required pharmacological treatment and even Cardiopulmonary Resuscitation (CPR). Initially, these episodes were attributed to the high cervical spine injury, but, later on, CT scan suggested that a fixation screw abutted on the esophagus and activated the vagus nerve by direct pressure. After repositioning of the cervical fixation, the bradycardia and asystole episodes were no longer observed and the patient was released to a rehabilitation ward. This case is presented in order to alert practitioners to the possibility that, after operative fixation of cervical spine injuries, recurrent episodes of bradyarrhythmia can be caused by incorrect placement of the fixation screws and might be confused with the natural history of the high cervical cord injury.


Sign in / Sign up

Export Citation Format

Share Document