scholarly journals Potential of Core-Collapse Supernova Neutrino Detection at JUNO

2021 ◽  
Author(s):  
Xin Huang
2021 ◽  
Author(s):  
Meriem Bendahman ◽  
Matteo Bugli ◽  
Alexis Coleiro ◽  
Marta Colomer Molla ◽  
Gwenhaël de Wasseige ◽  
...  

2019 ◽  
Vol 207 ◽  
pp. 05007
Author(s):  
Marta Colomer Molla ◽  
Massimiliano Lincetto

Core Collapse Supernovae (CCSNe) are explosive phenomena that may occur at the end of the life of massive stars, releasing over 99% of the energy through neutrino emission. While the explosion mechanism is not fully understood, neutrinos are believed to play an important role. The only detection as of today are the 24 neutrinos from SN1987A. The observation of the next Galactic CCSN will lead to important breakthroughs in astroparticle physics. For a Galactic CCSN, the KM3NeT ORCA and ARCA detectors in the Mediterranean Sea will observe a significant neutrino signal via the detection of Cherenkov light, mostly induced by Inverse Beta Decay interactions in sea water. The detection of coincident photons by the 31 photomultipliers of each KM3NeT digital optical module (DOM) allows for an efficient discrimination of the optical backgrounds. The KM3NeT detection sensitivity to a Galactic CCSN and the potential to resolve the neutrino light-curve have been estimated relying on detailed Monte Carlo simulations. Specific criteria are proposed for the online triggering and the participation in the SNEWS network.


2019 ◽  
Vol 209 ◽  
pp. 01009 ◽  
Author(s):  
Marta Colomer Molla ◽  
Massimiliano Lincetto

Core Collapse Supernovae (CCSN) are explosive phenomena that may occur at the end of the life of massive stars, releasing over 99% of the energy through neutrino emission with energies on the 10 MeV scale. While the explosion mechanism is not fully understood, neutrinos are believed to play an important role. The only detection as of today are the 24 neutrinos from supernova SN1987A. The observation of the next Galactic CCSN will lead to important breakthroughs across the fields of astrophysics, nuclear and particle physics. For a Galactic CCSN, the KM3NeT ORCA and ARCA detectors in the Mediterranean Sea will observe a significant number of neutrinos via the detection of Cherenkov light, mostly induced by Inverse Beta Decay (IBD) interactions in sea water. The detection of coincident photons by the 31 photomultipliers of the KM3NeT digital optical modules (DOMs) allows to separate the signal from the optical background sources. The KM3NeT detection sensitivity to a Galactic CCSN and the potential to resolve the neutrino light-curve have been estimated exploiting detailed Monte-Carlo simulations. Specific criteria are proposed for the online triggering and the participation in the SNEWS network.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
M. López ◽  
I. Di Palma ◽  
M. Drago ◽  
P. Cerdá-Durán ◽  
F. Ricci

2012 ◽  
Author(s):  
Nozomu Tominaga ◽  
Tomoki Morokuma ◽  
Sergei I. Blinnikov

2013 ◽  
Vol 9 (S296) ◽  
pp. 27-36
Author(s):  
Ken'ichi Nomoto

AbstractAfter the Big Bang, production of heavy elements in the early Universe takes place in the first stars and their supernova explosions. The nature of the first supernovae, however, has not been well understood. The signature of nucleosynthesis yields of the first supernovae can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those abundance patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of supernovae. We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars.


2011 ◽  
Vol 7 (S279) ◽  
pp. 134-137
Author(s):  
Thierry Foglizzo ◽  
Frédéric Masset ◽  
Jérôme Guilet ◽  
Gilles Durand

AbstractMassive stars end their life with the gravitational collapse of their core and the formation of a neutron star. Their explosion as a supernova depends on the revival of a spherical accretion shock, located in the inner 200km and stalled during a few hundred milliseconds. Numerical simulations suggest that the large scale asymmetry of the neutrino-driven explosion is induced by a hydrodynamical instability named SASI. Its non radial character is able to influence the kick and the spin of the resulting neutron star. The SWASI experiment is a simple shallow water analog of SASI, where the role of acoustic waves and shocks is played by surface waves and hydraulic jumps. Distances in the experiment are scaled down by a factor one million, and time is slower by a factor one hundred. This experiment is designed to illustrate the asymmetric nature of core-collapse supernova.


2021 ◽  
Vol 921 (2) ◽  
pp. 113
Author(s):  
Michael A. Sandoval ◽  
W. Raphael Hix ◽  
O. E. Bronson Messer ◽  
Eric J. Lentz ◽  
J. Austin Harris

Sign in / Sign up

Export Citation Format

Share Document