scholarly journals Quantum metrology with full and fast quantum control

Quantum ◽  
2017 ◽  
Vol 1 ◽  
pp. 27 ◽  
Author(s):  
Pavel Sekatski ◽  
Michalis Skotiniotis ◽  
Janek Kołodyński ◽  
Wolfgang Dür

We establish general limits on how precise a parameter, e.g. frequency or the strength of a magnetic field, can be estimated with the aid of full and fast quantum control. We consider uncorrelated noisy evolutions of N qubits and show that fast control allows to fully restore the Heisenberg scaling (~1/N^2) for all rank-one Pauli noise except dephasing. For all other types of noise the asymptotic quantum enhancement is unavoidably limited to a constant-factor improvement over the standard quantum limit (~1/N) even when allowing for the full power of fast control. The latter holds both in the single-shot and infinitely-many repetitions scenarios. However, even in this case allowing for fast quantum control helps to increase the improvement factor. Furthermore, for frequency estimation with finite resource we show how a parallel scheme utilizing any fixed number of entangled qubits but no fast quantum control can be outperformed by a simple, easily implementable, sequential scheme which only requires entanglement between one sensing and one auxiliary qubit.

2021 ◽  
Author(s):  
Guillaume Thekkadath ◽  
Santiago Sempere-Llagostera ◽  
Bryn Bell ◽  
Raj Patel ◽  
Myungshik Kim ◽  
...  

2022 ◽  
Author(s):  
Tobias Kippenberg ◽  
Amir Youssefi ◽  
Andrea Bancora ◽  
Shingo Kono ◽  
Mahdi Chegnizadeh ◽  
...  

Abstract Cavity optomechanics enables controlling mechanical motion via radiation pressure interaction [1–3], and has contributed to the quantum control of engineered mechanical systems ranging from kg scale LIGO mirrors to nano-mechanical systems, enabling entanglement [4, 5], squeezing of mechanical objects [6], to position measurements at the standard quantum limit [7], non-reciprocal [8] and quantum transduction [9]. Yet, nearly all prior schemes have employed single- or few-mode optomechanical systems. In contrast, novel dynamics and applications are expected when utilizing optomechanical arrays and lattices [10], which enable to synthesize non-trivial band structures, and have been actively studied in the field of circuit QED [11–14]. Superconducting microwave optomechanical circuits are a promising platform to implement such lattices [15], but have been compounded by strict scaling limitations. Here we overcome this challenge and realize superconducting circuit optomechanical lattices. We demonstrate non-trivial topological microwave modes in 1-D optomechanical chains as well as 2-D honeycomb lattices, realizing the canonical SuSchrieffer-Heeger (SSH) model [16–18]. Exploiting the embedded optomechanical interaction, we show that it is possible to directly measure the mode functions of the bulk band modes, as well as the topologically protected edge states, without using any local probe [19–21] or inducing perturbation [22, 23]. This enables us to reconstruct the full underlying lattice Hamiltonian beyond tight-binding approximations, and directly measure the existing residual disorder. The latter is found to be sufficiently small to observe fully hybridized topological edge modes. Such optomechanical lattices, accompanied by the measurement techniques introduced, of-fers an avenue to explore out of equilibrium physics in optomechanical lattices such as quan-tum [24] and quench [25] dynamics, topological properties [10, 26, 27] and more broadly, emergent nonlinear dynamics in complex optomechanical systems with a large number of degrees of freedoms [28–31].


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Y. Cai ◽  
J. Roslund ◽  
V. Thiel ◽  
C. Fabre ◽  
N. Treps

AbstractMeasuring the spectral properties of an optical frequency comb is among the most fundamental tasks of precision metrology. In contrast to general single-parameter measurement schemes, we demonstrate here single shot multi-parameter estimation of an optical frequency comb at and beyond the standard quantum limit. The mean energy and the central frequency as well as the spectral bandwidth of ultrafast pulses are simultaneously determined with a multi-pixel spectrally resolved (MPSR) apparatus, without changing the photonics architecture. Moreover, using a quantum frequency comb that intrinsically consists of multiple squeezed states in a family of Hermite–Gaussian spectral/temporal modes, the signal-to-noise ratios of the multiple spectral parameters estimation can surpass the standard quantum limit. Combining our multi-pixel detection scheme and the multimode entangled resource could find applications in ultrafast quantum metrology and multimode quantum information processing.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 110 ◽  
Author(s):  
Francesco Albarelli ◽  
Matteo A. C. Rossi ◽  
Dario Tamascelli ◽  
Marco G. Genoni

We study quantum frequency estimation for N qubits subjected to independent Markovian noise, via strategies based on time-continuous monitoring of the environment. Both physical intuition and an extended convexity property of the quantum Fisher information (QFI) suggest that these strategies are more effective than the standard ones based on the measurement of the unconditional state after the noisy evolution. Here we focus on initial GHZ states and on parallel or transverse noise. For parallel noise, i.e. dephasing, we show that perfectly efficient time-continuous photo-detection allows to recover the unitary (noiseless) QFI, and thus to obtain a Heisenberg scaling for every value of the monitoring time. For finite detection efficiency, one falls back to the noisy standard quantum limit scaling, but with a constant enhancement due to an effective reduced dephasing. Also in the transverse noise case we obtain that the Heisenberg scaling is recovered for perfectly efficient detectors, and we find that both homodyne and photo-detection based strategies are optimal. For finite detectors efficiency, our numerical simulations show that, as expected, an enhancement can be observed, but we cannot give any conclusive statement regarding the scaling. We finally describe in detail the stable and compact numerical algorithm that we have developed in order to evaluate the precision of such time-continuous estimation strategies, and that may find application in other quantum metrology schemes.


Author(s):  
Xinfang Liu ◽  
Xiushan Nie ◽  
Junya Teng ◽  
Li Lian ◽  
Yilong Yin

Moment localization in videos using natural language refers to finding the most relevant segment from videos given a natural language query. Most of the existing methods require video segment candidates for further matching with the query, which leads to extra computational costs, and they may also not locate the relevant moments under any length evaluated. To address these issues, we present a lightweight single-shot semantic matching network (SSMN) to avoid the complex computations required to match the query and the segment candidates, and the proposed SSMN can locate moments of any length theoretically. Using the proposed SSMN, video features are first uniformly sampled to a fixed number, while the query sentence features are generated and enhanced by GloVe, long-term short memory (LSTM), and soft-attention modules. Subsequently, the video features and sentence features are fed to an enhanced cross-modal attention model to mine the semantic relationships between vision and language. Finally, a score predictor and a location predictor are designed to locate the start and stop indexes of the query moment. We evaluate the proposed method on two benchmark datasets and the experimental results demonstrate that SSMN outperforms state-of-the-art methods in both precision and efficiency.


2021 ◽  
Author(s):  
James Thompson ◽  
Graham Greve ◽  
Chengyi Luo ◽  
Baochen Wu

Abstract Entanglement is a fundamental resource that allows quantum sensors to surpass the standard quantum limit set by the quantum collapse of independent atoms. Collective cavity-QED systems have succeeded in generating large amounts of directly observed entanglement involving the internal degrees of freedom of laser-cooled atomic ensembles. Here we demonstrate cavity-QED entanglement of external degrees of freedom to realize a matter-wave interferometer of 700 atoms in which each individual atom falls freely under gravity and simultaneously traverses two paths through space while also entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed metrological gain 3.4^{+1.1}_{-0.9} dB and 2.5^{+0.6}_{-0.6} dB below the standard quantum limit respectively. An entangled state is for the first time successfully injected into a Mach-Zehnder light-pulse interferometer with 1.7^{+0.5}_{-0.5} dB of directly observed metrological enhancement. These results open a new path for combining particle delocalization and entanglement for inertial sensors, searches for new physics, particles, and fields, future advanced gravitational wave detectors, and accessing beyond mean-field quantum many-body physics.


Sign in / Sign up

Export Citation Format

Share Document