Fault Tolerant Variants of the Fine-Grained Parallel Incomplete Lu Factorization

2015 ◽  
Vol 37 (2) ◽  
pp. C169-C193 ◽  
Author(s):  
Edmond Chow ◽  
Aftab Patel

Author(s):  
Saranya R ◽  
Pradeep C ◽  
Neena Baby ◽  
Radhakrishnan R

Reconfigurable computing for DSP remains an active area to explore as the need for incorporation with more conventional DSP technologies turn out to be obvious. Conventionally, the majority of the work in the area of reconfigurable computing is aimed on fine grained FPGA devices. Over the years, the focus is shifted from bit level granularity to a coarse grained composition. FIR filter remains and persist to be an important building block in various DSP systems. It computes the output by multiplying input samples with a set of coefficients followed by addition. Here multipliers and adders are modeled using the concept of divide and conquer. For developing a reconfiguarble FIR filter, different tap filters are designed as separate reconfigurable modules. Furthermore, there is an additional concern for making the system fault tolerant. A fault detection mechanism is introduced to detect the faults based on the nature of operands. The reconfigurable modules are structurally modeled in Verilog HDL and simulated and synthesized using Xilinx ISE 14.2. A comparison of the device utilization of reconfigurable modules is also presented in this paper by implementing the design on various Virtex FPGA devices.


2018 ◽  
Vol 10 (10) ◽  
pp. 1850108 ◽  
Author(s):  
Mohamed Abdelsabour Fahmy

The main aim of this paper is to propose a new boundary element algorithm for describing thermomechanical interactions in anisotropic soft tissues. The governing equations are studied based on the dual-phase lag bioheat transfer and Biot’s theory. Due to the advantages of convolution quadrature boundary element method (CQBEM), such as low CPU usage, low memory usage and suitability for treatment of soft tissues that have complex shapes, it is a versatile and powerful method for modeling of bioheat distribution in anisotropic soft tissues and the related deformation. The resulting linear systems for bioheat and mechanical equations are solved by Transpose-free quasi-minimal residual (TFQMR) solver with a dual-threshold incomplete LU factorization technique (ILUT) preconditioner that reduces the iterations number and total CPU time. Numerical results demonstrate the validity, efficiency and accuracy of the proposed algorithm and technique.


Author(s):  
A. U. Prakonina

The influence of the spectrum of original and preconditioned matrices on a convergence rate of iterative methods for solving systems of finite-difference equations applicable to two-dimensional elliptic equations with mixed derivatives is investigated. It is shown that the efficiency of the bi-conjugate gradient iterative methods for systems with asymmetric matrices significantly depends not only on the matrix spectrum boundaries, but also on the heterogeneity of the distribution of the spectrum components, as well as on the magnitude of the imaginary part of complex eigenvalues. For test matrices with a fixed condition number, three variants of the spectral distribution were studied and the dependences of the number of iterations on the dimension of matrices were estimated. It is shown that the non-uniformity in the eigenvalue distribution within the fixed spectrum boundaries leads to a significant increase in the number of iterations with increasing dimension of the matrices. The increasing imaginary part of the eigenvalues has a similar effect on the convergence rate. Using as an example the model potential distribution problem in a square domain, including anisotropic ring inhomogeneity, a comparative analysis of the matrix structure and the convergence rate of the bi-conjugate gradient method with Fourier – Jacobi and incomplete LU factorization preconditioners is performed. It is shown that the advantages of the Fourier – Jacobi preconditioner are associated with a more uniform distribution of the spectrum of the preconditioned matrix along the real axis and a better suppression of the imaginary part of the spectrum compared to the preconditioner based on the incomplete LU factorization.


Author(s):  
Gosia Wrzesińska ◽  
Rob V. van Nieuwpoort ◽  
Jason Maassen ◽  
Thilo Kielmann ◽  
Henri E. Bal

Sign in / Sign up

Export Citation Format

Share Document