scholarly journals Variants of determining correlations of deformation theory of plasticity in the calculation of shell of rotation on the basis of finite element method

Author(s):  
Yuriy V. Klochkov ◽  
Anatoliy P. Nikolaev ◽  
Olga V. Vakhnina ◽  
Mikhail Yu. Klochkov

Relevance. The problems of decline of resource-demanding of objects of building and engineer dictate the necessity of consideration of processes of deformation of constructions at the resiliently-plastic state. The widely in-use theory of account of practical properties of material is a deformation theory of plasticity. The aim of the research is development of variants of receipt of determining correlations on the step of ladening at deformation of material outside a resiliency. Methods. Algorithms over of receipt of determining correlations of theory of small resiliently-plastic deformations are brought on the step of ladening in two variants. In the first they turn out differentiation of expressions of tensions as functions of deformations on the basis of deformation theory of plasticity; in the second determining correlations turn out on the basis of hypothesis about the proportion of components of deviators increases of tensions to components of deviators increases of deformations. Results. On the test example of calculation of the jammed cylindrical shell realization of the got determining correlations is presented.

2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Liping Xue ◽  
G. E. O. Widera ◽  
Zhifu Sang

The purpose of this paper is to demonstrate that the burst pressure of a cylindrical shell subjected to internal pressure can be accurately predicted by using finite element method. The computer software ANSYS (Swanson Analysis System Inc., 2003, “Engineering Analysis Systems User's Manual”) is employed to perform a static, nonlinear analysis (both geometry of deformation and material behavior) using three-dimensional 20 node structural solid elements. The “Newton–Raphson method” and the “arclength method” are both employed to solve the nonlinear equations. A comparison with various empirical equations shows that the static finite element method simulation using the arclength method can be employed with sufficient accuracy to predict the burst pressure of a cylindrical shell. It is also shown that the Barlow equation is a good predictor of burst pressure of cylindrical shells.


Author(s):  
Lyudmila S. Polyakova ◽  
Vladimir I. Andreev

The aim of research is to compare two calculation methods using the example of solving the axisymmetric thermoelasticity problem. Methods. The calculation of a thick-walled cylindrical shell on the temperature effect was carried out by the numerical-analytical method and the finite element method, implemented in the LIRA-CAD software package. The shell consists of three layers: two layers of heat-resistant concrete and an outer steel layer. In the calculation, a piecewise linear inhomogeneity of the shell due to its three-layer structure and continuous inhomogeneity caused by the influence of a stationary temperature field is taken into account. The numerical-analytical method of calculation involves the derivation of a resolving differential equation, which is solved by the sweep method, it is possible to take into account the nonlinear nature of the deformation of the material using the method of successive approximations. To solve this problem by the finite element method, a similar computational model of the shell was constructed in the LIRA-CAD software package. The solution of the problem of thermoelasticity for an infinite cylinder (under conditions of a plane deformed state) and for a cylinder of finite length with free ends is given. Results . Comparison of the calculation results is carried out according to the obtained values of ring stresses σθ.


Sign in / Sign up

Export Citation Format

Share Document