scholarly journals Temporal Variability of the Wind Wave Parameters in the Baltic Sea in 1979–2018 Based on the Numerical Modeling Results

2020 ◽  
Vol 27 (4) ◽  
Author(s):  
A. N. Sokolov ◽  
◽  
B. V. Chubarenko ◽  
◽  

Purpose. The aim of the paper is to identify possible trends in the wave climate dynamics in the Baltic Sea, and to analyze statistical significance of the coefficients of these trends based on the results of their numerical modeling for 1979–2018. Methods and Results. The simulations for 1979–2018 (40 years) were carried out on an irregular grid using the MIKE 21 SW spectral wave model. The wind forcing was preset according to the ERA-Interim reanalysis data. The model was calibrated and validated against the data of wave buoys located in the northern and southern parts of the Baltic Sea. Based on the calibrated model, the wind wave parameters were calculated for the whole Baltic Sea area from 1979 to 2018 with the interval 1 hour. These parameters became the initial data for estimating temporal variability of the wind wave heights in the Baltic Sea for 40 years. The simulation results obtained on the irregular grid were interpolated to the regular one. It permitted to construct the maps of distribution of the maximum and average (for the 40-year period) significant wave heights in the Baltic Sea. The time trends for the average annual significant wave height values were revealed, and statistical significance of the coefficients of these trends was estimated. Conclusions. The average annual values of the significant wave heights over almost the whole Baltic Sea area for 1979–2018 (40 years) tend to decrease with the rate not exceeding 2–3 cm (2–3 %) per 10 years. The highest rate reduction is observed in the southeastern part of the Baltic Sea, the lowest – in the Gulf of Bothnia and the Gulf of Finland. Interannual variability of the average annual significant wave heights and the changes along the trend during the entire 40-years period are of the same order.

2011 ◽  
Vol 8 (6) ◽  
pp. 2237-2270 ◽  
Author(s):  
T. Soomere ◽  
R. Weisse ◽  
A. Behrens

Abstract. The basic features of the wave climate in the South-Eastern Baltic Sea are studied based on available long-term measurements and simulations. The analysis of average, typical and extreme wave conditions, frequency of occurrence of different wave parameters, variations in wave heights from weekly to decadal scales, etc., is performed based on waverider measurements at the Darss Sill since 1991. The measured climatology is compared against numerical simulations with the WAM wave model driven by downscaled reanalysis of wind fields for 1958–2002 and by adjusted geostrophic winds for 1970–2007. The wave climate in this region is typical for semi-enclosed basins of the Baltic Sea. The maximum wave heights are about half of those in the Baltic Proper. The overall reliably recorded maximum significant wave height HS =4.46 m occurred during a severe S-SW storm in 1993 when the 10-min average wind speed reached 28 m s−1. The long-term average significant wave height (0.75 m) shows modest interannual (about 12 % of the long-term mean) and substantial seasonal variation. The wave periods are mostly concentrated in a narrow range of 2.5–4 s and their distribution is almost constant over decades. The role of remote swell is very small. The annual wave properties show large interannual variability but no long-term trends in average and extreme wave heights can be observed.


2016 ◽  
Author(s):  
Nadezhda Kudryavtseva ◽  
Tarmo Soomere

Abstract. The main properties of the climate of waves in the seasonally ice-covered Baltic Sea and its decadal changes since 1990 are estimated from satellite altimetry data. The data set of significant wave heights (SWH) from all existing ten satellites is cleaned and cross-validated against in situ buoy and echosounder measurements. Even though several satellite pairs (ENVISAT/JASON-1, SARAL/JASON-2, ERS-1/TOPEX) exhibit substantial mutual temporal drift, and calm situations are ignored, the overall picture is consistent. The annual mean SWH shows tentative increase 0.005 m/yr but higher quantiles behave in a cyclic manner with a timescale of 10–15 yr. Changes in the basin-wide average SWH have a strong meridional pattern: an increase in the central and western parts of the sea and decrease in the eastern part. This pattern is likely caused by a rotation of wind directions rather than by an increase in the wind speed.


Ocean Science ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 141-150 ◽  
Author(s):  
T. Soomere ◽  
A. Räämet

Abstract. This study focuses on spatial patterns in linear trends of numerically reconstructed basic wave properties (average and extreme wave heights, wave periods) in the Baltic Sea under the assumption of no ice cover. Numerical simulations of wave conditions for 1970–2007, using the WAM wave model and adjusted geostrophic winds, revealed extensive spatial variations in long-term changes in both average and extreme wave heights in the Baltic Sea but almost no changes in the basinwide wave activity and wave periods. There has been a statistically significant decrease in the annual mean significant wave height by more than 10% between the islands of Öland and Gotland and in the southward sea area, and a substantial increase to the south-west of Bornholm, near the coast of Latvia, between the Åland Archipelago and the Swedish mainland, and between the Bothnian Sea and the Bothnian Bay. Variations in extreme wave heights (defined as the threshold for 1% of the highest waves each year) show similar patterns of changes. In several areas the trends in average and extreme wave heights are different. Such a complicated pattern of changes indicates that (i) different regions of the Baltic Sea basin have experienced widespread but essentially different changes in wind properties and (ii) many seemingly controversial trends and variations established in wave properties at different sites in the recent past may reflect the natural spatial variability in the Baltic Sea wave fields.


Sign in / Sign up

Export Citation Format

Share Document