Physical Oceanography
Latest Publications


TOTAL DOCUMENTS

303
(FIVE YEARS 144)

H-INDEX

2
(FIVE YEARS 2)

Published By Fsbsi Mhi

1573-160x

2021 ◽  
Vol 28 (6) ◽  
Author(s):  
V. V. Efimov ◽  
A. E. Anisimov ◽  
O. I. Komarovskaya ◽  
◽  
◽  
...  

2021 ◽  
Vol 28 (5) ◽  
Author(s):  
V. G. Gnevyshev ◽  
T. V. Belonenko ◽  
◽  

Purpose. The problem of a non-zonal vortex layer on the β-plane in the Miles – Ribner formulation is considered. It is known that in the absence of the β-effect, the vortex layer has no neutral eigenmodes, and the available two ones (varicose and sinusoidal) are unstable. Initially, generalization of the problem to the β-plane concerned only the zonal case. The problem for a non-zonal vortex layer is examined for the first time in the paper. It is known that in the WKB approximation for the linear wave disturbances (regardless of whether a zonal or non-zonal background flow is considered), there is an adiabatic invariant in the form of the law of the enstrophy (vorticity) conservation. For the zonal vortex layer, the enstrophy conservation law also holds, and no vorticity exchange occurs between the waves and the flow in the zonal case. The non-zonal vortex layer has qualitatively different features; particularly, it does not retain enstrophy. Thus, as a result, there appears a new class of solutions which can be interpreted as pure radiation of the Rossby waves by a non-zonal flow. Generalizing the vortex layer problem on the β-plane to the non-zonal case constitutes the basic aim of the present study. Methods and Results. A new class of linear stationary wave solutions, namely the Rossby waves, is found. It is shown a non-zonal flow can be directed in one way, whereas the stationary wave disturbances can move in the opposite (contrary) direction. The coexistence of such solutions for the shear non-zonal flow and stationary wave disturbances takes place due to the influence of the external force and mathematically comes from a non-self-adjoining character of the linear operator for a non-zonal background flow. Conclusions. There exists a new class of solutions that can be interpreted as pure radiation of the Rossby waves by a non-zonal flow. There is no such solution for a zonal flow. It is just non-zoning that gives the effect of pure radiation and corresponds to the classical definition of radiation. This approach makes it possible to eliminate inconsistency in terminology, when instabilities are mistakenly called radiation, and radiation – pure radiation.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
P. D. Lomakin ◽  
A. I. Chepyzhenko ◽  
A.A. Chepyzhenko ◽  
◽  
◽  
...  

Purpose. Using the data obtained in the expeditions, 2001–2014, the authors intend to identify the typical features of vertical structure of the colored dissolved organic matter (fDOM) concentration field in the Kerch Strait, to type the fDOM(z) profiles, to zone the region under consideration according to a given set of the qualitative features, and also to determine the features of statistical characteristics of the fDOM concentration distribution on the sea surface layer for the water areas with a typical structure. Methods and Results. The typing was carried out by the method of visual expert assessment of the curves of vertical distribution of concentration of the considered value. It was based on analyzing the fDOM(z) profile shapes. To reveal the boundaries of the areas with typical stratification of the fDOM content field, the thermohaline field structure was analyzed. Three types of water vertical structure were identified; they differed in the fDOM(z) profile shape and in statistical indices of empirical distribution of this substance concentration on the sea surface. These are the Azov Sea and the Black Sea types peculiar to the Azov and Black seas waters not contaminated by dissolved organic matter, and the type, the structure of which identifies the waters containing the anthropogenic component in the concentration field of the analyzed value. The latter type is characterized by a special intrusive shape of the fDOM(z) profile. For each of the identified stratification types, the histograms of the fDOM concentration distribution on the sea surface were calculated. Conclusions. The fDOM(z) profiles were typed. The Kerch Strait water area was zoned in accordance with a given set of the preliminary revealed qualitative features. The boundaries of the areas with typical stratification and their displacements were determined. It is shown that each structure type has its own statistical distribution of concentration of the considered value on the sea surface


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
S. G. Demyshev ◽  
S. V. Dovgaya ◽  
◽  

Purpose. The aim of the work is to assess the role of the basic forces in formation of the dynamic structures of the upper layer in the Marmara Sea in different hydrological seasons. Methods and Results. The numerical model developed in Marine Hydrophysical Institute, Russian Academy of Sciences, was used to calculate the hydrodynamic and energy characteristics of the sea circulation. The horizontal spatial resolution was 1.22 × 0.83 km, 18 horizons were used vertically, and the time step was 0.5 min. The characteristics of the waters inflowing through the Bosporus and Dardanelles straits corresponded to the available observational data. On the sea surface, the daily average fields of tangential wind stress, heat fluxes, precipitation and evaporation for 2008 were preset; these parameters were calculated using the regional atmospheric model MM5. Spatial distributions of the vortex structures and the corresponding energy flows in the upper sea layer for different seasons were considered. Having been analyzed, the average seasonal spatial distributions of the current velocity fields and the components of the kinetic energy budget showed that during the year, the vortices in the upper sea layer were formed mainly by two mechanisms. In the central part of the sea, generation of a large-scale anticyclone and its seasonal variability are basically conditioned by the wind forcing, whereas formation and evolution of coastal cyclonic eddies are caused by the buoyancy force. In the fields where the buoyancy, pressure and friction forcing takes place, the zones of local extremes are distinguished. Two of them are the areas of water inflow through the Bosphorus and Dardanelles straits. The strongest variability is observed in the Bosporus region that is certainly conditioned by the fact that the inflowing Black Sea waters have a decisive influence on seasonal nature of the Marmara Sea circulation. The extreme values in the other zones are the result of the coastline structure heterogeneities, that leads to formation of the coastal eddies, the energy source for which is the available potential energy. Conclusions. Analysis of the results of the performed numerical experiment makes it possible to conclude that in the upper layer of the Marmara Sea, formation and variability of the central anticyclone are conditioned by the wind forcing, while those of the coastal cyclones – by the buoyancy effect.


Sign in / Sign up

Export Citation Format

Share Document