scholarly journals Long-term spatial variations in the Baltic Sea wave fields

Ocean Science ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 141-150 ◽  
Author(s):  
T. Soomere ◽  
A. Räämet

Abstract. This study focuses on spatial patterns in linear trends of numerically reconstructed basic wave properties (average and extreme wave heights, wave periods) in the Baltic Sea under the assumption of no ice cover. Numerical simulations of wave conditions for 1970–2007, using the WAM wave model and adjusted geostrophic winds, revealed extensive spatial variations in long-term changes in both average and extreme wave heights in the Baltic Sea but almost no changes in the basinwide wave activity and wave periods. There has been a statistically significant decrease in the annual mean significant wave height by more than 10% between the islands of Öland and Gotland and in the southward sea area, and a substantial increase to the south-west of Bornholm, near the coast of Latvia, between the Åland Archipelago and the Swedish mainland, and between the Bothnian Sea and the Bothnian Bay. Variations in extreme wave heights (defined as the threshold for 1% of the highest waves each year) show similar patterns of changes. In several areas the trends in average and extreme wave heights are different. Such a complicated pattern of changes indicates that (i) different regions of the Baltic Sea basin have experienced widespread but essentially different changes in wind properties and (ii) many seemingly controversial trends and variations established in wave properties at different sites in the recent past may reflect the natural spatial variability in the Baltic Sea wave fields.

2010 ◽  
Vol 7 (6) ◽  
pp. 1889-1912
Author(s):  
T. Soomere ◽  
A. Räämet

Abstract. This study focuses on spatial patterns in linear trends of numerically reconstructed basic wave properties (average and extreme wave heights, wave period) in the Baltic Sea. Numerical simulations of wave conditions for 1970–2007, using the WAM wave model and adjusted geostrophic winds, revealed extensive spatial variations in long-term changes in both average and extreme wave heights in the Baltic Sea but almost no changes in the basinwide wave activity and wave periods. There has been a statistically significant decrease in the annual mean significant wave height by more than 10% between the islands of Öland and Gotland and in the southward sea area, and a substantial increase to the south-west of Bornholm, near the coast of Latvia, between Åland and the Swedish mainland, and between the Bothnian Sea and the Bothnian Bay. Variations in extreme wave heights (defined as the threshold for 1% of the highest waves each year) show similar patterns of changes. In several areas the trends in average and extreme wave heights are different. Such a complicated pattern of changes indicates that (i) different regions of the Baltic Sea basin have experienced widespread but essentially different changes in wind properties and (ii) many seemingly controversial trends and variations established in wave properties at different sites in the recent past may reflect the natural spatial variability in the Baltic Sea wave fields.


2011 ◽  
Vol 8 (6) ◽  
pp. 2237-2270 ◽  
Author(s):  
T. Soomere ◽  
R. Weisse ◽  
A. Behrens

Abstract. The basic features of the wave climate in the South-Eastern Baltic Sea are studied based on available long-term measurements and simulations. The analysis of average, typical and extreme wave conditions, frequency of occurrence of different wave parameters, variations in wave heights from weekly to decadal scales, etc., is performed based on waverider measurements at the Darss Sill since 1991. The measured climatology is compared against numerical simulations with the WAM wave model driven by downscaled reanalysis of wind fields for 1958–2002 and by adjusted geostrophic winds for 1970–2007. The wave climate in this region is typical for semi-enclosed basins of the Baltic Sea. The maximum wave heights are about half of those in the Baltic Proper. The overall reliably recorded maximum significant wave height HS =4.46 m occurred during a severe S-SW storm in 1993 when the 10-min average wind speed reached 28 m s−1. The long-term average significant wave height (0.75 m) shows modest interannual (about 12 % of the long-term mean) and substantial seasonal variation. The wave periods are mostly concentrated in a narrow range of 2.5–4 s and their distribution is almost constant over decades. The role of remote swell is very small. The annual wave properties show large interannual variability but no long-term trends in average and extreme wave heights can be observed.


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 287-300 ◽  
Author(s):  
T. Soomere ◽  
R. Weisse ◽  
A. Behrens

Abstract. The basic features of the wave climate in the Southwestern Baltic Sea (such as the average and typical wave conditions, frequency of occurrence of different wave parameters, variations in wave heights from weekly to decadal scales) are established based on waverider measurements at the Darss Sill in 1991–2010. The measured climate is compared with two numerical simulations with the WAM wave model driven by downscaled reanalysis of wind fields for 1958–2002 and by adjusted geostrophic winds for 1970–2007. The wave climate in this region is typical for semi-enclosed basins of the Baltic Sea. The maximum wave heights are about half of those in the Baltic Proper. The maximum recorded significant wave height HS =4.46 m occurred on 3 November 1995. The wave height exhibits no long-term trend but reveals modest interannual (about 12 % of the long-term mean of 0.76 m) and substantial seasonal variation. The wave periods are mostly concentrated in a narrow range of 2.6–4 s. Their distribution is almost constant over decades. The role of remote swell is very small.


2014 ◽  
Vol 129 ◽  
pp. 86-95 ◽  
Author(s):  
Tarmo Soomere ◽  
Andrus Räämet

2003 ◽  
Vol 30 (1) ◽  
pp. 107-126 ◽  
Author(s):  
Anette Jönsson ◽  
Barry Broman ◽  
Lars Rahm

1991 ◽  
Vol 24 (3-4) ◽  
pp. 373-383 ◽  
Author(s):  
A. Grimvall ◽  
H. Borén ◽  
S. Jonsson ◽  
S. Karlsson ◽  
R. Sävenhed

The long-term fate of chlorophenols and adsorbable organic halogens (AOX) was studied in two large recipients of bleach-plant effluents: Lake Vättern in Sweden and the Baltic Sea. The study showed that there is a long-distance transport (>100 km) of chloroguaiacols from bleach-plants to remote parts of receiving waters. However, there was no evidence of several-year-long accumulation of chloro-organics in the water-phase. A simple water-exchange model for Lake Vättern showed that the cumulated bleach-plant discharges from the past 35 years would have increased the AOX concentration in the lake by more than 100 µg Cl/l, if no AOX had been removed from the water by evaporation, sedimentation or degradation. However, the observed AOX concentration in Lake Vättern averaged only about 15 µg Cl/l, which was less than the average AOX concentration (32 µg Cl/l) in the “unpolluted” tributaries of the lake. Similar investigations in the Baltic Sea showed that non-point sources, including natural halogenation processes, accounted for a substantial fraction of the AOX in the open sea. The presence of 2,4,6-trichlorophenol in precipitation and “unpolluted” surface waters showed that non-point sources may also make a considerable contribution to the background levels of compounds normally regarded as indicators of bleach-plant effluents.


Sign in / Sign up

Export Citation Format

Share Document