Correlations between the Parameters of the Light Volume Scattering Functions in the Mediterranean Sea Surface Waters

2021 ◽  
Vol 28 (5) ◽  
Author(s):  
V. I. Mankovsky ◽  
E. V. Mankovskaya ◽  
◽  

Purpose. The aim of the work is to study relationships between the parameters of the light volume scattering functions based on the data of their measurements in the Mediterranean Sea surface waters. Methods and Results. The data of measurements of the light volume scattering functions in the water samples taken in a few regions of the southern Mediterranean Sea, namely from the Strait of Gibraltar to the Levant Sea, as well as in the central part of the Aegean Sea and near the Dardanelles Strait (May, 1998) were used. The following parameters of the volume scattering functions were calculated: total scattering coefficient, and asymmetry and variation coefficients. The maximum and minimum values of the scattering coefficient were 0.21 and 0.09 m–1, respectively; and those for the asymmetry coefficient – 77.8 and 33.9. The variation coefficient of the angle scattering coefficients changed within 35–79%, its maximum and minimum values fell on the angles 7.5° and 162.5°, respectively. Obtained were the relations between the variation coefficient and the scattering angle, the asymmetry coefficient and the scattering coefficient, and the angle scattering coefficients and the total scattering coefficient. All of them possess high (more than 0.9) correlation coefficients. The coefficient value (51.7%) at the angle 2° does not correspond to general relation of the variation coefficient to the scattering angle. This fact is explained by different contributions of coarse and fine suspended matter to the light volume scattering function. At the angle 2°, the main contribution is made by a coarse (organic) suspended matter, whereas at the angles exceeding 7.5° – by a fine (mineral) suspension. Conclusions. The values of the variation coefficient of the angle scattering coefficient at the angles equal to 2° and exceeding 7.5° demonstrate variability of the coarse and fine suspended matter in the Mediterranean Sea, respectively. The equation for the relation between the asymmetry coefficient of the light volume scattering functions and the total scattering coefficient obtained for the Mediterranean Sea waters is close to the analogous one obtained for the Atlantic Ocean tropical waters. The angle 3.5° is optimal for determining the total scattering coefficient using the angle scattering coefficient for the Mediterranean Sea functions.

2013 ◽  
Vol 10 (6) ◽  
pp. 9003-9041
Author(s):  
X. Zhang ◽  
Y. Huot ◽  
D. J. Gray ◽  
A. Weidemann ◽  
W. J. Rhea

Abstract. In the aquatic environment, particles can be broadly separated into phytoplankton (PHY), non-algal particle (NAP) and dissolved (or very small particle, VSP) fractions. Typically, absorption spectra are inverted to quantify these fractions, but volume scattering functions (VSFs) can also be used. Both absorption spectra and VSFs were used to calculate particle fractions for an experiment in Chesapeake Bay. A complete set of water inherent optical properties was measured using a suite of commercial instruments and a prototype Multispectral Volume Scattering Meter (MVSM); the chlorophyll concentration, [Chl] was determined using the HPLC method. The total scattering coefficient (measured by an ac-s) and the VSF (at a few backward angles, measured by a HydroScat 6 and an ECO-VSF) agreed with the LISST and MVSM data within 5%, thus indicating inter-instrument consistency. The size distribution and scattering parameters for PHY, NAP and VSP were inverted from measured VSFs. For the absorption inversion, the "dissolved" absorption spectra were measured for filtrate passing through a 0.2 μm filter, whereas [Chl] and NAP absorption spectra were inverted from the particulate fraction. Even though the total scattering coefficient showed no correlation with [Chl], estimates of [Chl] from the VSF-inversion agreed well with the HPLC measurements (r = 0.68, mean relative error s = −20%). The scattering associated with NAP and VSP both correlated well with the NAP and "dissolved" absorption coefficients, respectively. While NAP dominated forward, and hence total, scattering, our results also suggest that the scattering by VSP was far from negligible and dominated backscattering.


2013 ◽  
Vol 10 (9) ◽  
pp. 6029-6043 ◽  
Author(s):  
X. Zhang ◽  
Y. Huot ◽  
D. J. Gray ◽  
A. Weidemann ◽  
W. J. Rhea

Abstract. In the aquatic environment, particles can be broadly separated into phytoplankton (PHY), non-algal particle (NAP) and dissolved (or very small particle, VSP) fractions. Typically, absorption spectra are inverted to quantify these fractions, but volume scattering functions (VSFs) can also be used. Both absorption spectra and VSFs were used to estimate particle fractions for an experiment in the Chesapeake Bay. A complete set of water inherent optical properties was measured using a suite of commercial instruments and a prototype Multispectral Volume Scattering Meter (MVSM); the chlorophyll concentration, [Chl] was determined using the HPLC method. The total scattering coefficient measured by an ac-s and the VSF at a few backward angles measured by a HydroScat-6 and an ECO-VSF agreed with the LISST and MVSM data within 5%, thus indicating inter-instrument consistency. The size distribution and scattering parameters for PHY, NAP and VSP were inverted from measured VSFs. For the absorption inversion, the "dissolved" absorption spectra were measured for filtrate passing through a 0.2 μm filter, whereas [Chl] and NAP absorption spectra were inverted from the particulate fraction. Even though the total scattering coefficient showed no correlation with [Chl], estimates of [Chl] from the VSF-inversion agreed well with the HPLC measurements (r = 0.68, mean relative errors = −20%). The scattering associated with NAP and VSP both correlated well with the NAP and "dissolved" absorption coefficients, respectively. While NAP dominated forward, and hence total, scattering, our results also suggest that the scattering by VSP was far from negligible and dominated backscattering. Since the sizes of VSP range from 0.02 to 0.2 μm, covering (a portion of) the operationally defined "dissolved" matter, the typical assumption that colored dissolved organic matter (i.e., CDOM) does not scatter may not hold, particularly in a coastal or estuarine environment.


2015 ◽  
Vol 116 (1) ◽  
pp. 69-74 ◽  
Author(s):  
L Pérez ◽  
ML Abarca ◽  
F Latif-Eugenín ◽  
R Beaz-Hidalgo ◽  
MJ Figueras ◽  
...  

2008 ◽  
Vol 34 (4) ◽  
pp. 514-515 ◽  
Author(s):  
Giovanni Di Guardo

Sign in / Sign up

Export Citation Format

Share Document