scholarly journals CHARACTERISATION OF HORDEUM VULGARE CELLULOSE SYNTHASE-LIKE F6 PROMOTER VIA TRANSGENE EXPRESSION IN RICE

2021 ◽  
Vol 40 (2) ◽  
pp. 61-86
Author(s):  
Azreena Jamahari ◽  
Wong Ling-Chie ◽  
Fan Xioalai ◽  
Liu Qiaoquan ◽  
Leong Sui Sien ◽  
...  

Beta-glucan in cereal crops is known as a functional food, which can reduce cardiovascular diseases by lowering blood cholesterol levels. However, beta-glucan content is relatively low in rice grains, despite being relatively abundant in barley and oat grains. Taking advantage of rice as the staple food for Asians, increasing beta-glucan content in rice for their consumption may help to reduce cardiovascular-related diseases among them. Previous attempts in increasing beta-glucan content in rice via transgene expression of beta-glucan synthase genes from barley into rice were unsuccessful due to the use of non-tissue specific as well as constitutively expressing promoter. The current transgenic expression study was performed to characterise the promoter of beta-glucan synthase gene in barley using beta-glucuronidase (GUS) reporter gene. Two fragments of HvCslF6 promoter (2771 bp and 1257 bp) were successfully fused with GUS reporter gene and integrated into rice plants, demonstrated that the promoter was functional in the heterologous plant system. The presence of blue GUS staining was observed on the leaf, root, stem, and grain of the transgenic rice regardless of the promoter length used and stayed functional up to the next generation. GUS qualitative analysis confirmed that the shorter promoter length generated a stronger GUS activity in comparison to the longer one. This indicated that the presence of repressor elements in between the -2771 bp and -1257 bp regions. The preliminary results shed light on the strong promoter activity in the rice endosperm tissue. It can become an alternative to the collection of plant promoters that can be used for grain quality improvement and biofortification.

2001 ◽  
Vol 48 (3) ◽  
pp. 637-646 ◽  
Author(s):  
W Nowak ◽  
M Gawłowska ◽  
A Jarmołowski ◽  
J Augustyniak

Matrix attachment regions (MARs) are thought to participate in the organization and segregation of independent chromosomal loop domains. Although there are several reports on the action of natural MARs in the context of heterologous genes in transgenic plants, in our study we tested a synthetic MAR (sMAR) with the special property of unpairing when under superhelical strain, for its effect on reporter gene expression in tobacco plants. The synthetic MAR was a multimer of a short sequence from the MAR 3' end of the immunoglobulin heavy chain (IgH) enhancer. This sMAR sequence was used to flank the beta-glucuronidase (GUS) reporter gene within the T-DNA of the binary vector pBI121. Vectors with or without the sMARs were then used to transform tobacco plants by Agrobacterium tumefaciens. Transgenic plants containing the sMAR sequences flanking the GUS gene exhibited higher levels of transgene expression compared with transgenic plants which lacked the sMARs. This effect was observed independently of the position of the sMAR at the 5' side of the reporter gene. However, variation of the detected transgene expression was significant in all transformed plant populations, irrespective of the construct used.


Sign in / Sign up

Export Citation Format

Share Document