scholarly journals Evaluation of the Accuracy and Precision of the GE Dash 4000 Oscillometric Monitor for Blood Pressure Measurement in Anesthetized Female Dogs

2018 ◽  
Vol 46 (1) ◽  
pp. 5
Author(s):  
João Victor Barbier Ferronatto ◽  
Eduardo Raposo Monteiro ◽  
Bárbara Silva Correia ◽  
Luciana Branquinho Queiroga ◽  
José Ricardo Herrera Becerra

Background: Indirect measurement of arterial blood pressure, such as the oscillometric method, is the most commonly used in clinical practice of dogs and cats. This method measures blood pressure values that are estimates of direct (invasive) arterial blood pressure values. Oscillometric devices are easy to use even for non-experienced personnel. However, there is considerable variation in accuracy and precision of blood pressure values measured by different oscillometric monitors. The present study aimed to determine the accuracy and precision of the GE Dash 4000 oscillometric monitor for arterial blood pressure measurement in anesthetized female dogs.Materials, Methods & Results: Sixteen healthy adult female dogs received 0.3 mg/kg morphine as premedication and were anesthetized with propofol and isoflurane. A 22-gauge catheter was introduced into the dorsal pedal artery and connected to a rigid tubular system and a pressure transducer filled with heparinized solution to allow direct (invasive) measurement of systolic (SAP), mean (MAP) and diastolic arterial pressure (DAP). A blood pressure cuff was positioned proximal to the carpus and connected to the oscillometric device (GE-DASH 4000 monitor) in order to obtain indirect measurements of SAP, MAP and DAP. Cuff width was 40% of limb circumference. During anesthesia, invasive arterial blood pressure values were measured and recorded simultaneously with the oscillometric method. The Bland Altman method was used to evaluate agreement between the methods by calculating the bias (invasive - oscillometric) and limits of agreement. Percentages of differences between the methods with an error ≤ 10 mmHg and ≤ 20 mmHg were calculated. Results were compared with the criteria from the American College of Veterinary Internal Medicine (ACVIM) for validation of noninvasive blood pressure methods. Weight and age of dogs were 7.6 ± 2.2 kg and 20 ± 17 months, respectively. A total of 195 pairs of measurements were obtained from 16 animals. Of these pairs, 146 were classified as normotension (SAP: 90 to 140 mmHg), 28 as hypertension (SAP > 140 mmHg) and 21 as hypotension (SAP < 90 mmHg). Bias values ± SD (95% limits of agreement) were: SAP, 5.0 ± 16.5 mmHg (-27.3 to 37.4 mmHg); MAP, -3.4 ± 14.3 mmHg (-31.4 to 24.6 mmHg); and DAP, 4.2 ± 11.8 mmHg (-18.9 to 27.4 mmHg). According to the ACVIM criteria, maximum values accepted for bias (± SD) are 10 ± 15 mmHg. Percentages of differences ≤ 10 mmHg and ≤ 20 mmHg were: SAP, 41% and 80%; MAP, 54% and 84%; and DAP, 64% and 91%. ACVIM recommendations are ≥ 50% for errors within 10 mmHg and ≥ 80% for errors within 20 mmHg.Discussion: MAP and DAP values obtained by the GE-DASH 4000 monitor matched the ACVIM criteria for validation of noninvasive methods. Conversely, SAP values did not meet all the criteria, and were not considered reliable. Limitations of the study include: a) most dogs were of low weight; b) the ACVIM criteria refer to SAP measurements, but in the present study, the same criteria were applied to MAP and DAP measurements; c) the majority of observations were obtained during normotension. We conclude that MAP and DAP measurements obtained by the GE Dash 4000 monitor met the ACVIM criteria for validation of noninvasive blood pressure monitors. Therefore, this monitor was considered to have adequate accuracy and precision for MAP and DAP measurements in anesthetized normotensive dogs. Under the conditions of this study, SAP measurements obtained by this monitor were not reliable.

2021 ◽  
pp. 1-8
Author(s):  
Yi-Tse Hsiao ◽  
Yun-Wen Peng ◽  
Pin Huan Yu

Monitoring blood pressure helps a clinical veterinarian assess various conditions in birds. Blood pressure is not only a bio-indicator of renal or cardiovascular disease but is also a vital indicator for anesthesia. Anesthetic- and sedation-related mortality is higher in birds than dogs or cats. The traditional method of blood pressure measurement in mammals mainly relies on indirect methods. However, indirect blood pressure measurement is not reliable in birds, making the direct method the only gold standard. Although an arterial catheter can provide continuous real-time arterial pressure in birds, the method requires technical skill and is limited by bird size, and is thus not practical in birds with circulatory collapse. Intra-osseous (IO) blood pressure is potentially related to arterial pressure and may be a much easier and safer technique that is less limited by animal size. However, the relationship between IO pressure and arterial blood pressure has not been established. This study used mathematical methods to determine the relationship between IO pressure and arterial blood pressure. The Granger causality (G.C.) theory was applied in the study and used to analyze which pressure signal was leading the other. Our findings suggest that IO pressure is G.C. by arterial blood pressure; thus, the use of IO pressure measurements as an alternative to arterial blood pressure measurement is a rational approach.


2020 ◽  
Vol 48 ◽  
Author(s):  
Bárbara Silva Correia ◽  
Eduardo Raposo Monteiro ◽  
João Victor Barbieri Ferronatto ◽  
Luciana Branquinho Queiroga ◽  
José Ricardo Herrera Becerra

Background: Arterial blood pressure is one of the most commonly variables monitored during anesthetic procedures in veterinary patients. The most reliable method for measuring arterial blood pressure in dogs and cats is the direct (invasive) method. However, the oscillometric method is less complex and more practical for clinical routine in small animals. Nevertheless, oscillometric monitors present great variability in accuracy. The present study aimed to determine the accuracy of the Delta Life DL 1000 oscillometric monitor for measurement of systolic, mean and diastolic blood pressures (SAP, MAP and DAP, respectively) in anesthetized dogs of different weight ranges.Materials, Methods & Results: This study was approved by the Institutional Ethics Committee of Animal Use. Fifteen female dogs of different breeds, weighing 11.6 ± 10.0 kg and with a mean age of 48 ± 51 months were used. All animals were scheduled for elective surgery under general anesthesia in the Institution Veterinary Hospital. Dogs were anesthetized with morphine, propofol and isoflurane and had one 20 or 22 gauge catheter introduced into the dorsal pedal artery for continuous, invasive monitoring of SAP, MAP and DAP. A blood pressure cuff was positioned over the middle third of the radius and connected to Delta Life DL 1000 monitor. Oscillometric readings of SAP, MAP and DAP were registered every 5 minutes, and invasive values were simultaneously recorded. Values obtained with both methods were compared (invasive versus oscillometric) by use of the Bland Altman method to determine the bias, standard deviation of bias and 95% limits of agreement. The percentages of errors between the methods within 10 mmHg and within 20 mmHg were calculated. The results obtained were compared with the criteria from the American College of Veterinary Internal Medicine (ACVIM) for validation of indirect methods of arterial blood pressure measurement. Data were stratified into two groups according to the weight: < 10 kg (Group 1; n = 9); and ≥ 10 kg (Group 2; n = 6). In Group 1, 119 paired measurements were obtained, four of which classified as hypotension (SAP < 90 mmHg), 98 as normotension (SAP from 90 to 140mmHg) and 17 as hypertension (SAP > 140 mmHg). Bias (± SD) values in Group 1 were as follows: SAP, 5.2 ± 18.1 mmHg; MAP, -3.4 ± 17.2 mmHg; and DAP, 12.0 ± 17.5 mmHg. The percentages of errors within 10 mmHg were 40.3% for SAP; 45.4% for MAP and 28.6% for DAP. The percentages of errors within 20 mmHg were 72.3% for SAP, 84.0% for MAP and 68.1% for DAP. In Group 2, 66 paired measurements were obtained, nine of which classified as hypotension, 56 as normotension and one as hypertension. Bias (± SD) in Group 2 were as follows: SAP, 13.6 ± 14.3 mmHg; MAP, -1.1 ± 13.5 mmHg; and DAP, 8.2 ± 16.0 mmHg. The percentages of errors within 10 mmHg were 33.3% for SAP, 77.3% for MAP and 33.3% for DAP. The percentages of errors within 20 mmHg were 65.1% for SAP, 92.4% for MAP and 83.4% for DAP.Discussion: Based on the results of this study and reference criteria from the ACVIM, the Delta Life DL 1000 monitor had a poor accuracy for SAP, MAP and DAP and did not meet the criteria from the ACVIM in anesthetized dogs under 10 kg. Measurements of MAP in dogs ≥ 10 kg met the ACVIM criteria, but measurements of SAP and DAP did not. Based on the findings in this study, the DL 1000 oscillometric monitor is not recommended for blood pressure measurement in anesthetized dogs < 10 kg. In dogs ≥ 10 kg, measurements of MAP yielded acceptable values, but SAP and DAP measurements did not.


Sign in / Sign up

Export Citation Format

Share Document