scholarly journals Influence of different tree species on autotrophic and heterotrophic soil respiration in a mined area under reclamation

Author(s):  
Fernanda Valente ◽  
Marllon Castro ◽  
Lucas Gomes ◽  
Julio Cesar Neves ◽  
IVO Silva ◽  
...  

Planting trees is one of the most effective activities in recovering soil organic carbon (SOC) stocks of degraded areas, but we still lack information on how different tree species can influence soil respiration, one of the main sources of dioxide carbon (CO2) to the atmosphere. This study aimed to explore the influence of different forest species on the autotrophic and heterotrophic components of the total soil respiration in a bauxite mining area under reclamation. We analysed the soil CO2 efflux under five treatments: i) monoculture of clonal Eucalyptus; ii) monoculture of Anadenanthera peregrina (L.); iii) a mixed plantation of 16 native forest species (Nat); iv) a mined area without vegetation cover; and v) a natural forest cover. This design allowed exploring the soil CO2 dynamics in a gradient of recovery, from a degraded area to natural vegetation. Additionally, we measured soil temperature, moisture and soil characteristics. Soil CO2 efflux increased with increasing forest species cover in the rainy months. There was no significant change in CO2 efflux among the tree species. Heterotrophic soil respiration contributed to 64% of total soil CO2 efflux and was associated with litter decomposition. Amongst the abiotic variables, increases in soil moisture had the most influence on CO2 efflux. Therefore, these results help to understand the factors that underpin the loss of SOC and can orient management practices to improve soil organic matter and restore soil quality in degraded areas.

2020 ◽  
Vol 1 (2) ◽  
pp. 171-179

Soil respiration is a major component of global carbon cycle. Therefore, it is crucial to understand the environmental controls on soil respiration for evaluating potential response of ecosystems to climate change. In a temperate deciduous forest (located in Northern-Hungary) we added or removed aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture, and soil temperature. Soil CO2 efflux was measured at each plot using soda-lime method. Temperature sensitivity of soil respiration (Q10) was monitored via measuring soil temperature on an hourly basis, while soil moisture was determined monthly. Soil respiration increased in control plots from the second year after implementing the treatment, but results showed fluctuations from one year to another. The effect of doubled litter was less significant than the effect of removal. Removed litter and root inputs caused substantial decrease in soil respiration. We found that temperature was more influential in the control of soil respiration than soil moisture. In plots with no litter Q10 varied in the largest interval. For treatment with doubled litter layer, temperature sensitivity of CO2 efflux did not change considerably. The effect of increasing soil temperature is more conspicuous to soil respiration in litter removal treatments since lack of litter causes greater irradiation. When exclusively leaf litter was considered, the effect of temperature on soil respiration was lower in treatments with added litter than with removed litter. Our results reveal that soil life is impacted by the absence of organic matter, rather than by an excess of organic matter. Results of CO2 emission from soils with different organic matter content can contribute to sustainable land use, considering the changed climatic factors caused by global climate change.


2015 ◽  
Vol 48 (8) ◽  
pp. 871-880 ◽  
Author(s):  
L. Qin ◽  
G. H. Lv ◽  
X. M. He ◽  
J. J. Yang ◽  
H. L. Wang ◽  
...  

Author(s):  
Wanderson J. de Oliveira ◽  
Edivan R. de Souza ◽  
Jailson C. Cunha ◽  
Ênio F. de F. e Silva ◽  
Venâncio de L. Veloso

ABSTRACT Leaf gas exchanges in plants and soil respiration are important tools for assessing the effects of salinity on the soil-plant system. An experiment was conducted with cowpea irrigated with saline water (0, 2.5, 5.0, 7.5, 10.0 and 12.5 dS m-1) prepared with two sources: NaCl and a mixture of Ca, Mg, Na, K and Cl ions in a randomized block design and a 6 x 2 factorial scheme, with four replicates, totaling 48 experimental plots. At 20 days after planting (DAP), plants were evaluated for net photosynthesis (A), stomatal conductance (gs) and transpiration (E) using the Infra-Red Gas Analyzer (Model XT6400- LICOR), and water use efficiency, intrinsic water use efficiency and instantaneous efficiency of carboxylation were calculated. At 60 DAP, the soil CO2 efflux (soil respiration) was determined with a camera (Model 6400-09- LICOR). Salinity caused reductions in A, gs and E. However, the salt source did not have significant effect on these variables. Soil CO2 efflux was reduced with the increase in the electrical conductivity, especially in the mixture of ions.


2011 ◽  
Vol 151 (12) ◽  
pp. 1723-1730 ◽  
Author(s):  
M. Maier ◽  
H. Schack-Kirchner ◽  
E.E. Hildebrand ◽  
D. Schindler

2011 ◽  
Vol 261 (6) ◽  
pp. 1090-1098 ◽  
Author(s):  
Yonas Yohannes ◽  
Olga Shibistova ◽  
Asferachew Abate ◽  
Masresha Fetene ◽  
Georg Guggenberger

2011 ◽  
Vol 8 (5) ◽  
pp. 1153-1168 ◽  
Author(s):  
D. Epron ◽  
J. Ngao ◽  
M. Dannoura ◽  
M. R. Bakker ◽  
B. Zeller ◽  
...  

Abstract. Soil CO2 efflux is the main source of CO2 from forest ecosystems and it is tightly coupled to the transfer of recent photosynthetic assimilates belowground and their metabolism in roots, mycorrhiza and rhizosphere microorganisms feeding on root-derived exudates. The objective of our study was to assess patterns of belowground carbon allocation among tree species and along seasons. Pure 13CO2 pulse labelling of the entire crown of three different tree species (beech, oak and pine) was carried out at distinct phenological stages. Excess 13C in soil CO2 efflux was tracked using tuneable diode laser absorption spectrometry to determine time lags between the start of the labelling and the appearance of 13C in soil CO2 efflux and the amount of 13C allocated to soil CO2 efflux. Isotope composition (δ13C) of CO2 respired by fine roots and soil microbes was measured at several occasions after labelling, together with δ13C of bulk root tissue and microbial carbon. Time lags ranged from 0.5 to 1.3 days in beech and oak and were longer in pine (1.6–2.7 days during the active growing season, more than 4 days during the resting season), and the transfer of C to the microbial biomass was as fast as to the fine roots. The amount of 13C allocated to soil CO2 efflux was estimated from a compartment model. It varied between 1 and 21 % of the amount of 13CO2 taken up by the crown, depending on the species and the season. While rainfall exclusion that moderately decreased soil water content did not affect the pattern of carbon allocation to soil CO2 efflux in beech, seasonal patterns of carbon allocation belowground differed markedly between species, with pronounced seasonal variations in pine and beech. In beech, it may reflect competition with the strength of other sinks (aboveground growth in late spring and storage in late summer) that were not observed in oak. We report a fast transfer of recent photosynthates to the mycorhizosphere and we conclude that the patterns of carbon allocation belowground are species specific and change seasonally according to the phenology of the species.


2016 ◽  
Vol 13 (18) ◽  
pp. 5171-5182 ◽  
Author(s):  
János Balogh ◽  
Marianna Papp ◽  
Krisztina Pintér ◽  
Szilvia Fóti ◽  
Katalin Posta ◽  
...  

Abstract. Summer droughts projected to increase in central Europe due to climate changes strongly influence the carbon cycle of ecosystems. Persistent respiration activities during drought periods are responsible for a significant carbon loss, which may turn the ecosystem from a sink into a source of carbon. There are still gaps in our knowledge regarding the characteristic changes taking place in the respiration of the different components of the ecosystem in response to drought events.In the present study, we combined a physical separation of soil respiration components with continuous measurements of soil CO2 efflux and its isotopic (13C) signals at a dry grassland site in Hungary. The physical separation of soil respiration components was performed by means of inox meshes and tubes inserted into the soil. The root-excluded and root- and mycorrhiza-excluded treatments served to measure the isotopic signals of the rhizospheric, mycorrhizal fungi and heterotrophic components, respectively.In the dry grassland investigated in the study the three components of the soil CO2 efflux decreased at different rates under drought conditions. During drought the contribution made by the heterotrophic components was the highest (54 ± 8 %; mean ±SE). Rhizospheric component was the most sensitive to soil drying with its relative contribution to the total soil respiration dropping from 66 ± 7 (non-stressed) to 35 ± 17 % (mean ±SE) under drought conditions. According to our results the heterotrophic component of soil respiration is the major contributor to the respiration activities during drought events in the dry grassland ecosystem studied.


2011 ◽  
Vol 8 (1) ◽  
pp. 885-919 ◽  
Author(s):  
D. Epron ◽  
J. Ngao ◽  
M. Dannoura ◽  
M. R. Bakker ◽  
B. Zeller ◽  
...  

Abstract. Soil CO2 efflux is the main source of CO2 from forest ecosystems and it is tightly coupled to the transfer of recent photosynthetic assimilates belowground and their metabolism in roots, mycorrhiza and rhizosphere microorganisms feeding on root-derived exudates. The objectives of our study were to assess patterns of belowground carbon allocation among tree species and along seasons. Pure 13CO2 pulse labelling of the entire crown of three different tree species (beech, oak and pine) was carried out at distinct phenological stages. Excess 13C in soil CO2 efflux was tracked using tunable diode laser absorption spectrometry to determine time lags between the start of the labelling and the appearance of 13C in soil CO2 efflux and the amount of 13C allocated to soil CO2 efflux. Isotope composition (δ13C) of CO2 respired by fine roots and soil microbes was measured at several occasions after labelling, together with δ13C of bulk root tissue and microbial carbon. Time lags ranged from 0.5 to 1.3 days in beech and oak and were longer in pine (1.6–2.7 days during the active growing season, more than 4 days during the resting season), and the transfer of C to the microbial biomass was as fast as to the fine roots. The amount of 13C allocated to soil CO2 efflux was estimated from a compartment model. Seasonal patterns of carbon allocation to soil CO2 efflux differed markedly between species, with pronounced seasonal variations in pine and beech. In beech, it may reflect competition with other sinks (aboveground growth in late spring and storage in late summer) that were not observed in oak.


Sign in / Sign up

Export Citation Format

Share Document