scholarly journals Modeling phase formation on catalyst surfaces: Coke formation and suppression in hydrocarbon environments

Author(s):  
Peng Wang ◽  
Thomas Senftle

We develop a simulation toolset employing density functional theory (DFT) in conjunction with grand canonical Monte Carlo (GCMC) to study coke formation on Fe-based catalysts during propane dehydrogenation (PDH). As expected, pure Fe surfaces develop stable graphitic coke structures and rapidly deactivate. We find that coke formation is markedly less favorable on FeC and FeS surfaces. Fe-Al alloys display varying degrees of coke resistance, depending on their composition, suggesting that they can be optimized for coke resistance under PDH conditions. Electronic structure analyses show that both electron-withdrawing effects (on FeC and FeS) and electron-donating effects (on Fe-Al alloys) destabilize adsorbed carbon. On the alloy surfaces, a geometric effect also isolates Fe sites and disrupts the formation of graphitic carbon networks. This work demonstrates the utility of GCMC for studying the formation of disordered phases on catalyst surfaces and provides insights for improving the coke resistance of Fe-based PDH catalysts.

2018 ◽  
Vol 8 (18) ◽  
pp. 4609-4617 ◽  
Author(s):  
Jingyun Ye ◽  
Lin Li ◽  
J. Karl Johnson

We have used density functional theory and classical grand canonical Monte Carlo simulations to identify two functionalized metal organic frameworks (MOFs) that have the potential to be used for both CO2 capture from flue gas and catalytic conversion of CO2 to valuable chemicals.


2003 ◽  
Vol 21 (5) ◽  
pp. 389-423 ◽  
Author(s):  
D.D. Do ◽  
H.D. Do

A review is given of the pore characterization of carbonaceous materials, including activated carbon, carbon fibres, carbon nanotubes, etc., using adsorption techniques. Since the pores of carbon media are mostly of molecular dimensions, the appropriate modern tools for the analysis of adsorption isotherms are grand canonical Monte Carlo (GCMC) simulations and density functional theory (DFT). These techniques are presented and applications of such tools in the derivation of pore-size distribution highlighted.


2008 ◽  
Vol 600-603 ◽  
pp. 131-134
Author(s):  
Hiromitsu Takaba ◽  
Ai Sagawa ◽  
Miki Sato ◽  
Seika Ouchi ◽  
Yuko Yoshida ◽  
...  

The mechanism of layer growth as well as defect formation in the SiC crystal is fundamentally important to derive its appropriate performance. The purpose of the present study is to investigate competitive adsorption properties of growth species on the various 4H-SiC polytype surfaces. Adsorption structure and binding energy of growth species in the experimentally condition on various SiC surfaces were investigated by density functional theory. For the SiC(000-1) and SiC(0001) surfaces, the adsorption energy by DFT follows the orders C > H > Si > SiC2 > Si2C > C2H2. Furthermore, based on the DFT results, amount of adsorption of each species in the experimental pressure condition were evaluated by grand canonical Monte Carlo method. H and Si are main adsorbed species on SiC(0001) and SiC(000-1) surfaces, respectively. The ratio of amount of adsorption of Si to H was depending on the surface structure that might explain different growth rate of the surfaces.


Sign in / Sign up

Export Citation Format

Share Document