Adsorption Science & Technology
Latest Publications


TOTAL DOCUMENTS

2135
(FIVE YEARS 152)

H-INDEX

33
(FIVE YEARS 7)

Published By Sage Publications

2048-4038, 0263-6174

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Kowit Suwannahong ◽  
Jiyapa Sripirom ◽  
Chadrudee Sirilamduan ◽  
Vanlop Thathong ◽  
Torpong Kreetachart ◽  
...  

This research focused on batch experiment using a new generation of chelating resins via an ion exchange process to describe the metabolic adsorption and desorption capacity onto iminodiacetic acid/Chelex 100, bis-pyridylmethyl amine/Dowex m4195, and aminomethyl phosphonic/Lewatit TP260 functional groups in bioleaching. The results showed that Dowex m4195 had the highest performance of adsorption capacity for copper removal in both H+-form and Na+-form. Results for Lewatit TP260 and Chelex 100 revealed lower adsorption performance than results for Dowex m4195. The investigation of desorption from chelating resins was carried out, and it was found that 2 M ammonium hydroxide concentration provided the best desorption capacity of about 64.86% for the H+-form Dowex m4195 followed by 52.55% with 2 M sulfuric acid. Lewatit with 2 M hydrochloric acid gave the best desorption performance in Na+-form while Chelex 100 using hydrochloric at 1 M and 2 M provided similar results in terms of the H+-form and Na+-form. As aspects of the selective chelating resins for copper (II) ions in aqueous acidic solution generated from synthetic copper-citrate complexes from bioleaching of e-waste were considered, H+-form Dowex m4195 was a good performer in adsorption using ammonium hydroxide for the desorption. However, chelating resins used were subsequently reused for more than five cycles with an acidic and basic solution. It can be concluded from these results that selective chelating resins could be used as an alternative for the treatment of copper (II) ions contained in e-waste or application to other divalent metals in wastewater for sustainable water and adsorbent reuse as circular economy.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Avvaru Praveen Kumar ◽  
Dinesh Bilehal ◽  
Tegene Desalegn ◽  
Shalendra Kumar ◽  
Faheem Ahmed ◽  
...  

Degradation of dye pollutants by the photocatalytic process has been regarded as the most efficient green method for removal organic dyes from contaminated water. The current research work describes the synthesis of Fe3O4@SiO2@Ru hybrid magnetic composites (HMCs) and their photocatalytic degradation of two azo dye pollutants, methyl orange (MO) and methyl red (MR), under irradiation of visible light. The synthesis of Fe3O4@SiO2@Ru HMCs involves three stages, including synthesis of Fe3O4 magnetic microspheres (MMSs), followed by silica (SiO2) coating to get Fe3O4@SiO2 MMSs, and then incorporation of presynthesized Ru nanoparticles (~3 nm) onto the surface of Fe3O4@SiO2 HMCs. The synthesized HMCs were characterized by XRD, FTIR, TEM, EDS, XPS, BET analysis, UV-DRS, PL spectroscopy, and VSM to study the physical and chemical properties. Furthermore, the narrow band gap energy of the HMC photocatalyst is a significant parameter that provides high photocatalytic properties due to the high light adsorption. The photocatalytic activity of synthesized Fe3O4@SiO2@Ru HMCs was assessed by researching their ability to degrade the aqueous solution of MO and MR dyes under visible radiation, and the influence of various functional parameters on photocatalytic degradation has also been studied. The results indicate that the photocatalytic degradation of MO and MR dyes is more than 90%, and acid media favors better degradation. The probable mechanism of photodegradation of azo dyes by Fe3O4@SiO2@Ru HMC catalysts has been proposed. Furthermore, due to the strong ferromagnetic Fe3O4 core, HMCs were easily separated from the solution after the photocatalytic degradation process for reuse. Also, the photocatalytic activity after six cycles of use is greater than 90%, suggesting the stability of the synthesized Fe3O4@SiO2@Ru HMCs.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
G. Prasannamedha ◽  
P. Senthil Kumar

Porous carbon spheres were fabricated from sugarcane bagasse using a sustainable hydrothermal carbonization process followed by alkali impregnation inert atmosphere activation. Developed spheres were technically analysed for their chemical science, structural morphology, texture, porosity with respect to size distribution, and thermal degradation. Spheres are functionally enriched with oxygenated groups showing amorphous nature portraying as a smooth surface. After activation, intensity of functional groups is reduced due to reduction reaction by KOH thereby yielding highly rich porous carbon. The active surface area developed on spheres is 111 m2 g-1 holding pores that are mesoporous in nature. Resistance to thermal exposure using TGA showed that decomposition of hemicelluloses followed by cellulose yielded aromatized carbon-rich skeleton through thermal degradation of carboxyl and hydroxyl groups. Developed carbon was found to be effective in removing Ciprofloxacin Hydrochloride from water with maximum adsorption capacity of 110.008 mg g-1. Mechanistic removal followed pseudo-second-order kinetics along with Freundlich mode of adsorption. The presence of carboxylic and hydroxyl groups in porous carbon favoured elimination of CPF from water. The development of HTC-derived carbon helped conserving the energy thereby reducing the cost requirement.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Surafel Mustefa Beyan ◽  
Sundramurthy Venkatesa Prabhu ◽  
Temesgen Abeto Ambio ◽  
C. Gomadurai

Currently, the growth of tannery industries causes a significant volume of waste disposal to the environment due to harmful Cr(VI). Long-time exposure to Cr(VI) imposes serious hazards on all living organisms. Hence, the treatment of tannery waste to remove Cr(VI) is not a choice but mandatory. Therefore, this study focused on the removal of Cr(VI) from the aqueous solutions via a teff (Eragrostis tef) straw based-activated carbon (TSAC) which was derived from locally available agricultural solid waste, teff straw (TS). The prepared TSAC was characterized using BET, FTIR, SEM, and XRD. A central composite approach-based RSM analysis was undertaken for statistical modeling and optimization for maximized Cr(VI) removal with respect to four important factors, namely, initial concentration of Cr(VI), the dosage of TSAC, pH, and adsorption time. Optimized values for maximizing adsorption of Cr(VI) (95% of removal) were acquired to be initial Cr(VI) concentration: 87.57 mg/L, TSAC dosage: 2.742 g/100 mL, pH: 2.2, and contact time:109 min. The results from the design of the experiment were also analyzed for the significance of the interaction between the selected process parameters. In addition, the pseudo-second-order kinetic and Langmuir isotherm models were found suitable for describing the adsorption data. The adsorption capacity of Cr(VI) on TSAC was 19.48 mg/g. The observed thermodynamic characteristics reveal that Cr(VI) adsorption on TASC is endothermic in nature. From the results, TSAC had shown a potential Cr(VI) efficiency on optimized process conditions that can be exploited effectively as adsorbent for removal of Cr(VI)-contaminated wastes.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bo Yang ◽  
Xian Xie ◽  
Xiong Tong ◽  
Lingyun Huang

Terpenic oil (TO) is commonly used as a flotation frother for the selective separation of sulfide minerals. As a frother, most reports have mainly focused on its effect on froth stability and froth entrainment, whereas its influence on the floatability of sulfide minerals has received little attention. In this work, the influence of TO on the flotation behavior of sphalerite was investigated by using microflotation tests, contact angle and zeta potential measurements, and FT-IR and SEM-EDS analyses. Microflotation tests conducted in a modified Hallimond tube indicated that compared with the collector potassium butyl xanthate (KBX), the flotation recovery of sphalerite was significantly increased when TO was added to the pulp, but the recovery of Cu-activated sphalerite with the addition of TO was lower than that with the addition of KBX. Contact angle measurements demonstrated that the contact angle of sphalerite was distinctly increased by the addition of TO, but the contact angle of sphalerite treated with TO was lower than that treated with KBX after Cu activation. Zeta potential measurements demonstrated that the zeta potential of sphalerite particles was slightly decreased when treated with TO, and the isoelectric point (IEP) was decreased from 3.3 to 3.1 due to the interaction of TO with sphalerite particles. FT-IR and SEM-EDS confirmed that TO could be adsorbed on the sphalerite surface on the formation of the oil film due to its low solubility, thereby increasing the surface hydrophobicity of the sphalerite. In addition, the TO absorbed on the surface acts as a bridging role and promotes the hydrophobic agglomeration of sphalerite particles. These results suggest that except for froth entrainment, the influence of TO on the flotation behavior of sphalerite may be another reason for the misreporting of sphalerite in concentrates.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Maha Al-Khalili ◽  
Nasser Al-Habsi ◽  
Mohammad Shafiur Rahman

Measurement of water activity and moisture sorption isotherms of foods and biomaterials are important to determine the state of water. In this work, a dynamic temperature-humidity (DTH) controlled chamber was used to measure water sorption isotherm and compared with the conventional isopiestic method. Temperature and relative humidity of DTH chamber can be controlled in the range of -15 to 100°C and 0 to 98%, respectively; thus, measurement of water activity at any point can be measured within the above ranges. The DTH chamber method showed high reproducibility as compared with the conventional isopiestic method when measured isotherms of cellulose, lignin, and hemicellulase were compared at 30°C. Finally, isotherm data of cellulose, lignin, and hemicellulase were generated in the temperature range of 10-90°C using DTH chamber, and these were modelled by BET and GAB equations. The model parameters were correlated with the temperature.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jianhong Liang ◽  
Liuhuan Chen ◽  
Ding Liu ◽  
Chenxu Yi ◽  
Jing Zhu

Phosphorus (P) is one of the key limiting factors for the growth of forests and their net primary productivity in subtropical forest ecosystems. Phosphorus leaching of the forest soil to the catchment and groundwater in karst region is the main source of water eutrophication. Strong P sorption capacity of minerals is generally assumed to be a key driver of P leaching in subtropical ecosystems which varies among different soil types. Here, we estimated P adsorption capacity of the O/A and AB horizon in both limestone soil and red soil of subtropical forests by fitting the Langmuir and Freundlich isotherm to investigate the potential environmental risks of P. The maximum P sorption capacity ( Q m ), P sorption constant ( K L ), P sorption index (PSI), degree of P saturation (DPS), and maximum buffer capacity (MBC) were calculated. The results indicate that Q m of the O/A horizon in both soils were similar. Comparing these two soils, the red soil had a higher K L and MBC in the AB horizon; Q m of limestone soil was larger but K L was lower, indicating that the adsorption capacity of limestone soil was weaker and MBC was lower. There was no significant difference in PSI between the two soils. The DPS values of both soils were below 1.1%, indicating that P saturation is low in both subtropical forest soils due to the lack of marked anthropogenic disturbance. In the O/A horizon, P saturation associated with available P (DPSM3 and DPSOlsen) and that associated with P in the Fe-Al bound state (DPScitrate) were higher in the red soil than in the limestone soil. DPS did not differ significantly in the AB horizon, except for higher DPSM3 and DPScitrate in the red soil. The findings highlight the influence of the soil types on P adsorption. The P adsorption and buffering of red soils were higher than those of limestone soils, indicating a lower risk of P leaching in red subtropical forest soils.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Mobolaji M. Jegede ◽  
Olatunde S. Durowoju ◽  
Joshua N. Edokpayi

The continuous degradation of surface water quality by dye materials is of concern globally. Agricultural waste Litchi chinensis (LC) peel in its raw (RL) and modified (CL) forms was used as potential sorbents for sequestration of Congo red (CR) dye from an aqueous solution. The sorbents were characterized before and after sorption with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Brunauer, Emmett, and Teller (BET) surface area analysis, and X-ray diffraction (XRD). Determination of the point of zero charge (PZC) suggested CR dye sorption from an aqueous solution would be best in acidic pH. Batch experimental drivers such as the effects of time, dosage, initial concentration, pH, and temperature were optimized and used. Results from the study showed that modification with citric acid (CA) reduced the equilibration time from 90 to 15 min. Change in water chemistry did not significantly affect the removal efficiency of the sorbent but rather slightly improved it for both sorbent types. The smaller particle size of <125 μm recorded higher removal efficiency than the larger one (>125 μm). The effect of temperature affects the sorption differently. For the RL system, it decreases with an increase in the temperature, while for the CL system it increases with an increase in temperature. The Langmuir isotherm best described the equilibrium data obtained based on the linearized coefficients with maximum sorption capacities ( q max ) of 55.56 mg/g (RL) and 58.48 mg/g (CL). The pseudo-second-order model also best described the kinetic data. The thermodynamics study showed that the reaction is both feasible and spontaneous. Both sorbents recorded high removal efficiency for other dyes such as rhodamine B, methylene blue, methyl orange, malachite green, and erythrosin B. The five cycled regeneration/sorption experiments with 0.1 M NaOH as the desorbing agent showed that the regenerated sorbents efficiently removed CR dye from an aqueous solution close to their virgin samples for the first three cycles. This research, therefore, establishes LC peel as a potential eco-friendly, readily available, and effective sorbent for sequestration of hazardous dyes from wastewater.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Thi Tuong An Tran ◽  
Huynh Thanh Linh Duong ◽  
Thi Thuy Phuong Pham ◽  
Tri Nguyen ◽  
Thi Dung Nguyen ◽  
...  

Magnetic composite fabricated from polyaniline and Fe3O4-hydrotalcite (Pan/MHT) was successfully applicated for removal of methyl orange (MO) from wastewater. The structure and properties of Pan/MHT were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, vibrating sample magnetometer, and Brunauer-Emmett-Teller adsorption isotherm. Adsorption kinetic results indicated that the adsorption process followed pseudosecond-order kinetic model ( R 2 = 0.999 ), MO adsorption onto Pan/MHT was well described by Freundlich isotherm ( R 2 = 0.994 ), and the MO adsorption capacity of 2 Pan/MHT obtained the highest with Q e = 156.25   mg / g . Batch adsorption experiments were carried out using magnetic composite with the effects of initial MO concentration, solution pH, and adsorbent dosage. The results revealed that the magnetic Pan/MHT exhibited efficient adsorption of MO in the aqueous solution as a result of the affinity for organic dyes, microporous structure, and suitable surface area for adsorption (15,460 m2/g). The superparamagnetic behavior of Pan/MHT (with H c = 18.56   Oe , M s = 23.38 × 10 − 3   emu / g , and M r = 0.91 × 10 − 3   emu / g ) helps that it could be separated from the solution and performs as an economical and alternative adsorbent to removal and degrade azo dye from wastewater. Pan/MHT was also investigated to reuse after desorption of MO in 0.1 M HCl, and the results show that 2 Pan/MHT can be reused for 4 cycles with Q e = 79.66   mg / g .


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Buryan Petr ◽  
Tomas Hlincik

In this work, we analysed the impact of adding several previously untested Sorbacal calcium-based substances to the raw limestone that is currently used for dry desulphurisation of brown-coal fluidised-bed boilers. Our focus was to examine whether these additives could potentially improve the limestone SO2 adsorption capacity. The main criterion was the time period for which each enriched limestone was able to keep its desulphurisation ability, i.e., time for which the SO2 concentration in the heated model flue gas was kept below 200 mg/m3 (current legal limit for the technology in our scope). The analysis showed that the limestone desulphurisation ability increased when 20% of Sorbacal SP was added to the calcined limestone. The overall desulphurisation capacity of this enriched mass was even higher than what would be proportional to the isolated capacity of the additive itself. On the other hand, the enrichment of raw limestone with Sorbacal H 90 proved to be unpromising for the technology of brown-coal fluidised-bed boilers as the fine particles of the additive were carried away, and fluidised bed was inhomogeneous with ducts forming in it.


Sign in / Sign up

Export Citation Format

Share Document