carbon networks
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 107)

H-INDEX

42
(FIVE YEARS 12)

2022 ◽  
Vol 609 ◽  
pp. 179-187
Author(s):  
Huiling Li ◽  
Lihua Cao ◽  
Huijun Zhang ◽  
Zhiwei Tian ◽  
Qian Zhang ◽  
...  

Author(s):  
Yuyan Li ◽  
Huan Ye ◽  
Yunpeng Qu ◽  
Zongxiang Wang ◽  
Kai Sun

Abstract Three-dimensional (3D) carbon networks composed of graphene (GR) and carbon nanotube (CNT) were constructed in copper calcium titanate (CCTO) in order to realize negative permittivity behavior. The results show that negative permittivity can be obtained at kHz frequencies above percolation threshold when 3D carbon networks are successfully constructed. Negative permittivity originates from the low-frequency plasmonic state which is explained by the Drude model. The magnitude of negative permittivity was tuned between 105 and 106 which significantly correlates with concentration of free carriers. Moreover, the reactance spectra clarify the inductive character of negative permittivity materials.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 1057-1062
Author(s):  
Teng Zhang ◽  
Cesare Grazioli ◽  
Huixia Yang ◽  
Kaiyue Jiang ◽  
Iulia Emilia Brumboiu ◽  
...  

The bottom-up synthesis and preliminary characterizations of a new biphenylene-based 2D framework are presented. This new low-dimensional carbon allotrope potentially completes the many hypothesized carbon networks based on biphenylene.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Taisuke Matsuno ◽  
Seiya Terasaki ◽  
Kanako Kogashi ◽  
Ryosuke Katsuno ◽  
Hiroyuki Isobe

AbstractThe internal hollow space of carbon nanotubes provides a unique nanometre-sized space to capture various molecular entities. The inner space circumfused by sp2-carbon networks can also encapsulate diamondoid molecules to afford sp2/sp3-hybrid nanocarbon peapods that have recently emerged as unique nanostructures. In this study, the sp2/sp3-hybrid peapods have been mimicked by adopting a cylindrical molecule and the smallest diamondoid, i.e., adamantane, to demonstrate the existence of ultrafast rotational motion. The solid-state rotational frequency is measured by NMR spectroscopy to record 1.06 THz that is, to the best of our knowledge, the largest value recorded for solid-state rotations of molecules. Theoretical calculations reveal that multivalent CH-π hydrogen bonds anchored the diamondoid guest on the π-wall of the cylindrical host. The weak hydrogen bonds are prone not only to cleave but also to regenerate at the interfaces, which give freedom to the guest for ultrafast isotropic rotations in the inertial regime.


Sign in / Sign up

Export Citation Format

Share Document