scholarly journals Soil and water conservation in terraced and non-terraced cultivations - a massive comparison of 50 vineyards

Author(s):  
Anton Pijl ◽  
Wendi Wang ◽  
Eugenio Straffelini ◽  
Paolo Tarolli

Understanding the soil and water conservation (SWC) impact of steep-slope agricultural practices (e.g. terraces) has arguably never been more relevant than today, in the face of widespread intensifying rainfall conditions. In northern Italy, a diverse mosaic of terraced and non-terraced cultivation systems have historically developed from local traditions and more recently from the introduction of machinery. Previous studies suggested that each vineyard configuration is characterised by a specific set of soil degradation patterns. However, an extensive analysis of SWC impacts by different vineyard configurations is missing, while this is crucial for providing robust guidelines for future-proof viticulture. Here, we provide a unique extensive comparison of SWC in 50 vineyards, consisting of 10 sites of 5 distinct practices: slope-wise cultivation (SC), contour cultivation (CC), contour terracing (CT), broad-base terracing (BT) and diagonal terracing (DT). A big-data analysis of physical erosion modelling based on high-resolution LiDAR data is performed, while four predefined SWC indicators are systematically analysed and statistically quantified. Regular contour terracing (CT) ranked best across all indicators, reflecting a good combination of flow interception and homogeneous distribution of runoff and sediment under intense rainfall conditions. The least SWC-effective practices (SC, CC, and DT) were related to vineyards optimised for trafficability by access roads or uninterrupted inter-row paths, which create high upstream-downstream connectivity and are thus prone to flow accumulation. The novel large-scale approach of this study offers a robust comparison of SWC impacts under intense rainstorms, which is becoming increasingly relevant for sustainable future management of such landscapes.

2013 ◽  
Vol 64 (5) ◽  
pp. 423 ◽  
Author(s):  
J. L. Hatfield ◽  
R. M. Cruse ◽  
M. D. Tomer

Society faces substantial challenges to expand food production while adapting to climatic changes and ensuring ecosystem services are maintained. A convergence of these issues is occurring in the Midwestern United States, i.e. the ‘cornbelt’ region that provides substantial grain supplies to world markets but is also well known for its contribution to hypoxic conditions in the Gulf of Mexico due to agricultural nutrient losses. This review examines anticipated trends in climate and possible consequences for grain production and soil resource management in this region. The historic climate of this region has been ideal for large-scale agriculture, and its soils are among the world’s most productive. Yet under current trends, degradation of the soil resource threatens our capacity to ensure a stable food supply and a clean environment in the face of a changing climate. A set of strategies and practices can be implemented to meet these challenges by maintaining and improving hydrologic and plant-growth functions of soil, which will improve outcomes for aquatic ecosystems and for the agricultural sector. Soil management ensures our long-term capacity to provide a reliable food supply, and mitigates pressures to expand agricultural practices into marginal croplands that would lead to further environmental degradation.


Sign in / Sign up

Export Citation Format

Share Document