scholarly journals Linear and second-order nonlinear optical properties of non-fullerene acceptor derivatives with A-D-A structure

Author(s):  
Lijing Gong ◽  
Jing Xu ◽  
Chunping Li ◽  
Xiangyu Zhang ◽  
Zhi Jiang

In this paper, in order to study the relationship between structure and performance, four new NFA derivatives were designed based on the two reported NFA molecules BO-4Cl and BTP-S2 by replacing the BT unit with a less-electron deficient BTz unit and inserting another ethylene double bond between the central core and the terminal groups. The DFT and TD–DFT calculations were applied to invstigate linear and nonlinear optical properties, such as electronic structure, electronic absorption, reorganization energy and the second-order NLO properties. The investigation demonstrates that they are all narrow bandgap derivatives, the absorption spectrum extends to the near-infrared region and using two ethylene double bond is the most effective way to reduce the energy gap, redshift the maximum absorption peak and the middle absorption band, enhance hole transport ability and weaken electron transport ability and enhance second-order NLO response. Considering the smaller electron and hole reorganization energy and the larger static first hyperpolarizability value, the studied NFA derivatives have great potential to become ambipolar charge transport materials and large second-order NLO materials.

Author(s):  
Jean Custodio ◽  
Giulio Demetrius Creazo d'Oliveira ◽  
Fernando Gotardo ◽  
Leandro Cocca ◽  
Leonardo De Boni ◽  
...  

In the following study, a combined experimental and theoretical study of the nonlinear optical properties (NLO) of two chalcone derivatives, (E)-3-(2-methoxyphenyl)-1-(2-(phenylsulfonylamine)phenyl)prop-2-en-1-one (MPSP) and (E)-3-(3-nitrophenyl)-1-(2-(phenylsulfonylamine)phenyl)prop-2-en-1-one (NPSP) in DMSO is reported. Single...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Animesh Pandey ◽  
Reena Yadav ◽  
Mandeep Kaur ◽  
Preetam Singh ◽  
Anurag Gupta ◽  
...  

AbstractTopological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.


2021 ◽  
Vol 446 ◽  
pp. 214113
Author(s):  
Alessia Colombo ◽  
Claudia Dragonetti ◽  
Véronique Guerchais ◽  
Dominique Roberto

2014 ◽  
Vol 1031 ◽  
pp. 7-12 ◽  
Author(s):  
Hongjuan Song ◽  
Mengying Zhang ◽  
Hailing Yu ◽  
Cunhuan Wang ◽  
Haiyan Zou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document