scholarly journals Artificial intelligence (AI) assisted fatigue fracture recognition based on morphing and Fully Convolutional Networks

Author(s):  
Yetao Lyu ◽  
Zi Yang ◽  
Hao Liang ◽  
Beini Zhang ◽  
Ming Ge ◽  
...  

Fatigue fracture is one of the most common metallic component failure cases in manufacturing industries. The observation on fractography can provide the direct evidence for failure analysis. In this study, an image segmentation method based on Fully Convolutional Networks (FCNs) was proposed to figure out the boundary between fatigue crack propagation and fast fracture regions from optical microscope (OM) fractography images. Furthermore, novel morphing-based data augmentation method was adopted to enable few-shot learning of sample images. The proposed framework can successfully segment two categories, namely the crack propagation and fast fracture regions, thus differentiating the boundary of two regions in one image. The artificial intelligence (AI) assisted fatigue analysis architecture can complete the failure analysis procedure in 0.5 second and prove the feasibility of fatigue failure analysis. The segmentation accuracy of developed network achieves 95.4% for the fatigue crack propagation region, as well as 97.2% for the fast fracture region, which possesses comparable accuracy to the segmentation results using Mask R-CNN Regional Convolutional Neural Network (Mask R-CNN), one state-of-the-art deep learning networks.

2015 ◽  
Vol 16 (2) ◽  
pp. 158-166
Author(s):  
Andriy Sorochak ◽  
Pavlo Maruschak ◽  
Olegas Prentkovskis

Abstract The main regularities in fatigue fracture of the railway axle material - the OSL steel - are found in this paper. Micromechanisms of fatigue crack propagation are described and systematized, and a physical-mechanical interpretation of the relief morphology at different stages of crack propagation is proposed for fatigue cracks in specimens cut out of the surface, internal and central layers of the axle.


2011 ◽  
Vol 488-489 ◽  
pp. 432-435
Author(s):  
Qi Wang ◽  
Yin Sheng Chen ◽  
Kai Song

The appearance and growth of the microcracks in the structure is an important factor that influences the structure safety and its service life. Thus it is very important to detect the crack and monitor its growth at the beginning of the crack. Aiming at the main style of failures in metal structure - fatigue fracture, this paper research acoustic emission waveforms analysis that base on wavelet packets feature extraction, through processing acoustic emission signal to test metal fatigue fracture. First, this paper analyses the reason of metal fatigue fracture and introduces the theory of acoustic emission. Based on that, we establish the time domain module of acoustic emission signal and extract the feature of acoustic emission signal using wavelet packets. According to the experimental results bending specimen, acoustic emission techniques monitoring fatigue crack propagation is certificated not only to resemble variable rule of fatigue crack propagation but also to catch generation of fatigue crack in real time. Compared with the method of parameter extraction, this method can not only realize real-time and dynamic monitoring, but also get the result that is similar with fatigue crack expanding rate curve.


2011 ◽  
Vol 314-316 ◽  
pp. 945-948
Author(s):  
You Yang ◽  
Hua Wu ◽  
Xue Song Li

High cycle fatigue behavior of MB8 magnesium alloy were investigated using an up-and-down load method. High cycle fatigue tests were carried out up to 107cycles at a stress ratio R=0.1 and frequency of 90Hz on specimens using a high frequency fatigue machine. Fatigue fracture surfaces of specimens that in the high cycle fatigue tests were also observed using a scanning electron microscope for revealing the micro-mechanisms of fatigue crack initiation and propagation. The results showed that fatigue limit of MB8 alloy at room temperature is 90.2 MPa under the numbers of cycle to failure Nf=107 conditions using up-and-down method calculation. The fatigue strength of the alloy is about 34% of its tensile strength. The micro-fatigue fracture surface of MB8 alloy included three representative regions. These regions are fatigue initiation area, fatigue crack propagation area and fatigue fracture area. Fatigue cracks of MB8 alloy initiate principally at surface and subsurface, and propagate along the grain boundary. The fatigue striations of fatigue crack propagation area are not clear. The fatigue fracture of test specimens show the rupture characteristics of dimple.


Sign in / Sign up

Export Citation Format

Share Document