scholarly journals Study on energy and information-entropic measures of Hulthén potential in D dimension by an intuitive approximation to centrifugal term

Author(s):  
D Nath ◽  
Amlan Roy

Energy spectrum as well as various information theoretic measures are considered for Hulthén potential in D dimension. For a given ℓ≠0 state, analytic expressions are derived, following a simple intuitive approximation for accurate representation of centrifugal term, within the conventional Nikiforov-Uvarov method. This is derived from a linear combination of two widely used Greene-Aldrich and Pekeris-type approximations. Energy, wave function, normalization constant, expectation value in r and p space, Heisenberg uncertainty relation, entropic moment of order α¯, Shannon entropy, Rényi entropy, disequilibrium, majorization as well as four selected complexity measures like LMC (López-Ruiz, Mancini, Calbert), shape Rényi complexity, Generalized Rényi complexity and Rényi complexity ratio are offered for different screening parameters (δ). The effective potential is described quite satisfactorily throughout the whole domain. Obtained results are compared with theoretical energies available in literature, which shows excellent agreement. Performance of six different approximations to centrifugal term is critically discussed. An approximate analytical expression for critical screening for a specific state in arbitrary dimension is offered. Additionally, some inter-dimensional degeneracy occurring in two states, at different dimension for a particular δ is also uncovered. PACS: 02.60.-x, 03.65.Ca, 03.65.Ge, 03.65.-w Keywords: Hulthén potential, Rényi complexity ratio, Statistical complexity, Majorization, Pekeris approximation, Greene-Aldrich approximation.

2011 ◽  
Vol 9 (4) ◽  
pp. 737-742 ◽  
Author(s):  
Jerzy Stanek

AbstractAn approximate analytical solution of the radial Schrödinger equation for the generalized Hulthén potential is obtained by applying an improved approximation of the centrifugal term. The bound state energy eigenvalues and the normalized eigenfunctions are given in terms of hypergeometric polynomials. The results for arbitrary quantum numbers n r and l with different values of the screening parameter δ are compared with those obtained by the numerical method, asymptotic iteration, the Nikiforov-Uvarov method, the exact quantization rule, and variational methods. The results obtained by the method proposed in this work are in a good agreement with those obtained by other approximate methods.


2008 ◽  
Vol 372 (27-28) ◽  
pp. 4779-4782 ◽  
Author(s):  
Chun-Sheng Jia ◽  
Jian-Yi Liu ◽  
Ping-Quan Wang

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Hilmi Yanar ◽  
Ali Havare

Spin and pseudospin symmetric Dirac spinors and energy relations are obtained by solving the Dirac equation with centrifugal term for a new suggested generalized Manning-Rosen potential which includes the potentials describing the nuclear and molecular structures. To solve the Dirac equation the Nikiforov-Uvarov method is used and also applied the Pekeris approximation to the centrifugal term. Energy eigenvalues for bound states are found numerically in the case of spin and pseudospin symmetry. Besides, the data attained in the present study are compared with the results obtained in the previous studies and it is seen that our data are consistent with the earlier ones.


2008 ◽  
Vol 17 (06) ◽  
pp. 1107-1123 ◽  
Author(s):  
SAMEER M. IKHDAIR ◽  
RAMAZAN SEVER

The one-dimensional semi-relativistic equation has been solved for the [Formula: see text]-symmetric generalized Hulthén potential. The Nikiforov–Uvarov (NU) method which is based on solving the second-order linear differential equations by reduction to a generalized equation of hypergeometric type, is used to obtain exact energy eigenvalues and corresponding eigenfunctions. We have investigated the positive and negative exact bound states of the s-states for different types of complex generalized Hulthén potentials.


2016 ◽  
Vol 3 (02) ◽  
pp. 169
Author(s):  
Nani Sunarmi ◽  
Suparmi S ◽  
Cari C

<span>The Schrödinger equation for Hulthen potential plus Poschl-Teller Non-Central potential is <span>solved analytically using Nikiforov-Uvarov method. The radial equation and angular equation <span>are obtained through the variable separation. The solving of Schrödinger equation with <span>Nikivorov-Uvarov method (NU) has been done by reducing the two order differensial equation <span>to be the two order differential equation Hypergeometric type through substitution of <span>appropriate variables. The energy levels obtained is a closed function while the wave functions <span>(radial and angular part) are expressed in the form of Jacobi polynomials. The Poschl-Teller <span>Non-Central potential causes the orbital quantum number increased and the energy of the <span>Hulthen potential is increasing positively.</span></span></span></span></span></span></span></span><br /></span>


2009 ◽  
Vol 24 (24) ◽  
pp. 4519-4528 ◽  
Author(s):  
CHUN-SHENG JIA ◽  
YONG-FENG DIAO ◽  
LIANG-ZHONG YI ◽  
TAO CHEN

By using an improved new approximation scheme to deal with the centrifugal term, we investigate the bound state solutions of the Schrödinger equation with the Hulthén potential for the arbitrary angular momentum number. The bound state energy spectra and the unnormalized radial wave functions have been approximately obtained by using the supersymmetric shape invariance approach and the function analysis method. The numerical experiments show that our approximate analytical results are in better agreement with those obtained by using numerical integration approach for small values of the screening parameter δ than the other analytical results obtained by using the conventional approximation to the centrifugal term.


Sign in / Sign up

Export Citation Format

Share Document