relativistic equation
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 7 (2) ◽  
pp. 22-27
Author(s):  
Gennadiy Kichigin

The paper addresses the problem of acceleration of particles in a constant, uniform magnetic field of magnitude B and a uniform electric field perpendicular to it, which slowly increases with time. Assuming that the electric field grows linearly up to the maximum value Em=B, approximate analytical relations have been found which determine the particle velocity dependence on the acceleration time. The particles are shown to accelerate for the entire time of the increase in the electric field to a certain final energy, whose value depends on the acceleration rate. It has been established that the lower the acceleration rate, the greater the limiting energy. In the case when the ratio Em/B <0.9, using the solution method proposed by Alfvén in the drift approximation, an analytical solution of the relativistic equation of particle motion has been obtained. The results can be used to find the energy of particles in various pulsed processes in space plasma.


2021 ◽  
Vol 7 (2) ◽  
pp. 24-29
Author(s):  
Gennadiy Kichigin

The paper addresses the problem of acceleration of particles in a constant, uniform magnetic field of magnitude B and a uniform electric field perpendicular to it, which slowly increases with time. Assuming that the electric field grows linearly up to the maximum value Em=B, approximate analytical relations have been found which determine the particle velocity dependence on the acceleration time. The particles are shown to accelerate for the entire time of the increase in the electric field to a certain final energy, whose value depends on the acceleration rate. It has been established that the lower the acceleration rate, the greater the limiting energy. In the case when the ratio Em/B <0.9, using the solution method proposed by Alfvén in the drift approximation, an analytical solution of the relativistic equation of particle motion has been obtained. The results can be used to find the energy of particles in various pulsed processes in space plasma.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 182
Author(s):  
Ignacio Pastor ◽  
Ramón F. Álvarez-Estrada ◽  
Luis Roso ◽  
José Guasp ◽  
Francisco Castejón

We investigated the classical nonlinear Thomson scattering (TS), from a single relativistic electron, generated by either: (a) an incoming plane wave monochromatic laser radiation and general elliptical polarization or (b) incoming radiations with intrinsic orbital angular momentum (OAM). Both (a) and (b) propagate along the z direction, with wave vector k0, frequency ω0, and initial phase φ0≠0 and have any intensity. Item (a) enables obtaining general electron TS Doppler frequencies and other quantities, for fusion plasmas. We explored the possibility of approximating nonlinear TS with OAM beams (Item (b)) by means of nonlinear TS with plane wave beams (Item (a)). For Item (a), a general explicit solution of the Lorentz relativistic equation and the subsequent TS are given in terms of ζ=ω0t−k0z (t denoting time). In particular, it includes the cases for linear and circular polarizations and φ0≠0 for fusion plasmas, thereby extending previous studies for φ0=0. The explicit solutions give rise to very efficient computations of electron TS Doppler frequencies, periods of trajectories, and drift velocities, and the comparisons with ab initio numerical solutions (for Item (a)) yield an excellent match. The approximate approach, using explicit solutions for Item (a), towards TS OAM (employing ab initio numerical computations for Item (b)), extending previously reported ones) yields a quite satisfactory agreement over time spans including several optical cycles, for a wide range of laser intensities, polarizations, and electron energies. The role of φ0≠0 was analyzed. A simple quantitative criterion to predict whether the agreement between the two approaches (a) and (b) would be observed over a given time span is discussed.


Author(s):  
Luca Nanni

Formulating a relativistic equation for particles with arbitrary spin remains an open challenge in theoretical physics. In this study, the main algebraic approaches used to generalize the Dirac and Kemmer&ndash;Duffin equations for particles of arbitrary spin are investigated. It is proved that an irreducible relativistic equation formulated using spin matrices satisfying the commutation relations of the de Sitter group leads to inconsistent results, mainly as a consequence of violation of unitarity and the appearance of a mass spectrum that does not reflect the physical reality of elementary particles. However, the introduction of subsidiary conditions resolves the problem of unitarity and restores the physical meaning of the mass spectrum. The equations obtained by these approaches are solved and the physical nature of the solutions is discussed.


2021 ◽  
pp. 1-25
Author(s):  
Jaime Muñoz Rivera ◽  
Verónica Poblete ◽  
Octavio Vera

We consider an Klein–Gordon relativistic equation with a boundary dissipation of fractional derivative type. We study of stability of the system using semigroups theory and classical theorems over asymptotic behavior.


2021 ◽  
Vol 502 (4) ◽  
pp. 5227-5244
Author(s):  
Raj Kishor Joshi ◽  
Indranil Chattopadhyay ◽  
Dongsu Ryu ◽  
Lallan Yadav

ABSTRACT We study the evolution of one-dimensional relativistic jets, using the exact solution of the Riemann problem for relativistic flows. For this purpose, we solve equations for the ideal special relativistic fluid composed of dissimilar particles in flat space-time and the thermodynamics of fluid is governed by a relativistic equation of state. We obtain the exact solution of jets impinging on denser ambient media. The time variation of the cross-section of the jet-head is modelled and incorporated. We present the initial condition that gives rise to a reverse shock. If the jet-head cross-section increases in time, the jet propagation speed slows down significantly and the reverse-shock may recede opposite to the propagation direction of the jet. We show that the composition of jet and ambient medium can affect the jet solution significantly. For instance, the propagation speed depends on the composition and is maximum for a pair-dominated jet, rather than a pure electron-positron or electron-proton jet. The propagation direction of the reverse-shock may also strongly depend on the composition of the jet.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 294
Author(s):  
Michael M. Tung

We present the relativistic generalization of the classical harmonic oscillator suspended within a uniform gravitational field measured by an observer in a laboratory in which the suspension point of the spring is fixed. The starting point of this analysis is a variational approach based on the Euler–Lagrange formalism. Due to the conceptual differences of mass in the framework of special relativity compared with the classical model, the correct treatment of the relativistic gravitational potential requires special attention. It is proved that the corresponding relativistic equation of motion has unique periodic solutions. Some approximate analytical results including the next-to-leading-order term in the non-relativistic limit are also examined. The discussion is rounded up with a numerical simulation of the full relativistic results in the case of a strong gravity field. Finally, the dynamics of the model is further explored by investigating phase space and its quantitative relativistic features.


Sign in / Sign up

Export Citation Format

Share Document