hulthen potential
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 16)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Vol 88 (3) ◽  
pp. 295-311
Author(s):  
P. SAHOO ◽  
U. LAHA ◽  
B. KHIRALI ◽  
A.K. BEHERA

Author(s):  
D Nath ◽  
Amlan Roy

Energy spectrum as well as various information theoretic measures are considered for Hulthén potential in D dimension. For a given ℓ≠0 state, analytic expressions are derived, following a simple intuitive approximation for accurate representation of centrifugal term, within the conventional Nikiforov-Uvarov method. This is derived from a linear combination of two widely used Greene-Aldrich and Pekeris-type approximations. Energy, wave function, normalization constant, expectation value in r and p space, Heisenberg uncertainty relation, entropic moment of order α¯, Shannon entropy, Rényi entropy, disequilibrium, majorization as well as four selected complexity measures like LMC (López-Ruiz, Mancini, Calbert), shape Rényi complexity, Generalized Rényi complexity and Rényi complexity ratio are offered for different screening parameters (δ). The effective potential is described quite satisfactorily throughout the whole domain. Obtained results are compared with theoretical energies available in literature, which shows excellent agreement. Performance of six different approximations to centrifugal term is critically discussed. An approximate analytical expression for critical screening for a specific state in arbitrary dimension is offered. Additionally, some inter-dimensional degeneracy occurring in two states, at different dimension for a particular δ is also uncovered. PACS: 02.60.-x, 03.65.Ca, 03.65.Ge, 03.65.-w Keywords: Hulthén potential, Rényi complexity ratio, Statistical complexity, Majorization, Pekeris approximation, Greene-Aldrich approximation.


2021 ◽  
Vol 46 (4) ◽  
pp. 60-73
Author(s):  
Ushie Patrick Obogo ◽  
Ofem Egbe Ubi ◽  
Collins Okon Edet ◽  
Akpan Ndem Ikot

In this study, an approximate solution of the Schr�dinger equation for the q-deformed Hulthen-quadratic exponential-type potential model within the framework of the Nikiforov�Uvarov method was obtained. The bound state energy equation and the corresponding eigenfunction was obtained. The energy spectrum is applied to study H2, HCl, CO and LiH diatomic molecules. The effect of the deformation parameters and other potential parameters on the energy spectra of the system were graphically and numerically analyzed in detail. Special cases were considered when the potential parameters were altered, resulting in deformed Hulthen potential, Hulthen potential, deformed quadratic exponential-type potential and quadratic exponential-type potential. The energy eigenvalues expressions agreed with what obtained in literature. Finally, the results can find many applications in quantum chemistry, atomic and molecular physics.


Author(s):  
Abdelmadjid Maireche

In this study, the analytical solutions of the Klein–Gordon equation for any [Formula: see text] states of the modified effective mass potential under the modified unequal scalar and vector Coulomb–Hulthén potential (MUSVCH-P) are derived by using an approximation method to the centrifugal potential term in the symmetries of relativistic noncommutative three-dimensional real space (RNC: 3D-RS). The new analytical expressions for eigenvalues of the energy spectrum and the new mass of mesons, such as charmonium and bottomonium that have the quark and antiquark flavor, have been estimated by using Bopp’s shift method, and perturbation theory. The energy state equation depends on the global parameters characterizing the noncommutativity space and the potential parameter [Formula: see text] in addition to the Gamma function and the discreet atomic quantum numbers [Formula: see text]. The expression for the new energy spectra is applied to obtain the new mass spectra of heavy quarkonium systems (charmonium and bottomonium) in the symmetries of (RNC: 3D-RS). The comparisons show that our theoretical results are in very good agreement with the reported works.


2021 ◽  
Vol 5 (2) ◽  
pp. 255-263
Author(s):  
Bako M. Bitrus ◽  
U Wadata ◽  
C. M. Nwabueze ◽  
E. S. Eyube

In this paper, concept of supersymmetric quantum mechanics has been employed to derive expression for bound state energy eigenvalues of the Tietz-Hulthén potential, the corresponding equation for normalized radial eigenfunctions were deduced by ansatz solution technique. In dealing with the centrifugal term of the effective potential of the Schrödinger equation, a Pekeris-like approximation recipe is considered. By means of the expression for bound state energy eigenvalues and radial eigenfunctions, equations for expectation values of inverse separation-squared and kinetic energy of the Tietz-Hulthén potential were obtained from the Hellmann-Feynman theorem. Numerical values of bound state energy eigenvalues and expectation values of inverse separation-squared and kinetic energy the Tietz-Hulthén potential were computed at arbitrary principal and angular momentum quantum numbers. Results obtained for computed energy eigenvalues of Tietz-Hulthén potential corresponding to Z = 0 and V0 = 0 are in excellent agreement with available literature data for Tietz and Hulthén potentials respectively. Studies have also revealed that increase in parameter Z results in monotonic increase in the mean kinetic energy of the system. The results obtained in this work may find suitable applications in areas of physics such as: atomic physics, chemical physics, nuclear physics and solid state physics


2021 ◽  
Vol 75 (4) ◽  
Author(s):  
Yu Ying He ◽  
Li Guang Jiao ◽  
Aihua Liu ◽  
Yong Zhi Zhang ◽  
Yew Kam Ho

2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 193
Author(s):  
E. P. Inyang ◽  
E. S. William ◽  
J. A. Obu

Analytical solutions of the N-dimensional Schrödinger equation for the newly proposed Varshni-Hulthén potential are obtained within the framework of Nikiforov-Uvarov method by using Greene-Aldrich approximation scheme to the centrifugal barrier. The numerical energy eigenvalues and the corresponding normalized eigenfunctions are obtained in terms of Jacobi polynomials. Special cases of the potential are equally studied and their numerical energy eigenvalues are in agreement with those obtained previously with other methods. However, the behavior of the energy for the ground state and several excited states is illustrated graphically.


2020 ◽  
Vol 4 (2) ◽  
pp. 425-435
Author(s):  
Dlama Yabwa ◽  
Eyube E.S ◽  
Yusuf Ibrahim

In this work we have applied ansatz method to solve for the approximate ℓ-state solution of time independent Schrödinger wave equation with modified Möbius squared potential plus Hulthén potential to obtain closed form expressions for the energy eigenvalues and normalized radial wave-functions. In dealing with the spin-orbit coupling potential of the effective potential energy function, we have employed the Pekeris type approximation scheme, using our expressions for the bound state energy eigenvalues, we have deduced closed form expressions for the bound states energy eigenvalues and normalized radial wave-functions for Hulthén potential, modified Möbius square potential and Deng-Fan potential. Using the value 0.976865485225 for the parameter ω, we have computed bound state energy eigenvalues for various quantum states (in atomic units). We have also computed bound state energy eigenvalues for six diatomic molecules: HCl, LiH, TiH, NiC, TiC and ScF. The results we obtained are in near perfect agreement with numerical results in the literature and a clear demonstration of the superiority of the Pekeris-type approximation scheme over the Greene and Aldrich approximation scheme for the modified Möbius squares potential plus Hulthén potential.


Sign in / Sign up

Export Citation Format

Share Document