scholarly journals First Record of Mountain Lions, Puma concolor, in Elk Island National Park, Alberta

2004 ◽  
Vol 118 (4) ◽  
pp. 605
Author(s):  
Glynnis A. Hood ◽  
Tim Neufeld

Several sightings of Mountain Lions (Puma concolor) and wildlife mortalities consistent with predation by Mountain Lion have occurred in and adjacent to Elk Island National Park from February 2003 to present. These are the first recorded Mountain Lions (locally called Cougar) sightings since the area encompassing the park was protected in 1906.

2015 ◽  
Vol 97 (2) ◽  
pp. 373-385 ◽  
Author(s):  
David T. Wilckens ◽  
Joshua B. Smith ◽  
Stephanie A. Tucker ◽  
Daniel J. Thompson ◽  
Jonathan A. Jenks

Abstract Recent recolonization of mountain lions ( Puma concolor ) into the Little Missouri Badlands of North Dakota has led to questions regarding the potential impacts of predation on prey populations in the region. From 2012 to 2013, we deployed 9 real-time GPS collars to investigate mountain lion feeding habits. We monitored mountain lions for 1,845 telemetry-days, investigated 506 GPS clusters, and identified 292 feeding events. Deer ( Odocoileus spp.) were the most prevalent item in mountain lion diets (76.9%). We used logistic regression to predict feeding events and size of prey consumed at an additional 535 clusters. Our top model for predicting presence of prey items produced a receiver operating characteristic score of 0.90 and an overall accuracy of 81.4%. Application of our models to all GPS clusters resulted in an estimated ungulate kill rate of 1.09 ungulates/week (95% confidence interval [ CI ] = 0.83–1.36) in summer (15 May‒15 November) and 0.90 ungulates/week (95% CI = 0.69–1.12) in winter (16 November‒14 May). Estimates of total biomass consumed were 5.8kg/day (95% CI = 4.7–6.9) in summer and 7.2kg/day (95% CI = 5.3–9.2) in winter. Overall scavenge rates were 3.7% in summer and 11.9% in winter. Prey composition included higher proportions of nonungulates in summer (female = 21.5%; male = 24.8%) than in winter (female = 4.8%; male = 7.5%). Proportion of juvenile ungulates in mountain lion diets increased during the fawning season (June‒August) following the ungulate birth pulse in June (June–August = 60.7%, 95% CI = 43.0–78.3; September–May = 37.2%, 95% CI = 30.8–43.7), resulting in an ungulate kill rate 1.61 times higher (1.41 ungulates/week, 95% CI = 1.12–1.71) than during the remainder of the year (0.88 ungulates/week, 95% CI = 0.62–1.13). Quantifying these feeding characteristics is essential to assessing the potential impacts of mountain lions on prey populations in the North Dakota Badlands, where deer dominate the available prey base and mountain lions represent the lone apex predator.


2020 ◽  
Author(s):  
JA Dellinger ◽  
B Cristescu ◽  
J Ewanyk ◽  
DJ Gammons ◽  
D Garcelon ◽  
...  

© 2019 The Wildlife Society Wildlife agencies are generally tasked with managing and conserving species at state and local levels simultaneously. Thus, it is necessary for wildlife agencies to understand basic ecological processes of a given species at multiple scales to aid decision making at commensurately varied spatial and behavioral scales. Mountain lions (Puma concolor) occur throughout California, USA, and are at the center of a variety of management and conservation issues. For example, they are genetically and demographically at risk in 1 region yet apparently stable and negatively affecting endangered species in another. Currently, no formal plan exists for mountain lions in California to deal with these diverse scenarios involving issues of local mountain lion population viability and problems related to predation of endangered species. To facilitate development of a state-wide management and conservation plan, we quantified habitat selection by mountain lions at 2 spatial scales across the range of environmental conditions in which the species is found in California. Our analyses used location data from individuals (n = 263) collared across the state from 2001–2019. At the home range scale, mountain lions selected habitat to prioritize meeting energetic demands. At the within home range scale, mountain lions avoided areas of human activity. Further, our analyses revealed 165,350–170,085 km2, depending on season, of suitable mountain lion habitat in California. Fifty percent of the suitable habitat was on unprotected lands and thus vulnerable to development. These habitat selection models will help in the development of a state-wide conservation and management plan for mountain lions in California by guiding mountain lion population monitoring through time, prioritization of habitat to be conserved for maintaining demographic connectivity and gene flow, and efforts to mediate mountain lion-prey interactions. Our work and application area will help with wildlife policy and management decisions related to depredation problems at the local scale and issues of habitat connectivity at the statewide scale. © 2019 The Wildlife Society.


2017 ◽  
Author(s):  
Maya N. Evanitsky ◽  
Richard J. George ◽  
Stephen Johnson ◽  
Stephanie Dowell ◽  
George H. Perry

AbstractMountain lions (Puma concolor) were once endemic across the United States. The Northeastern population of mountain lions has been largely nonexistent since the early 1800s and was officially declared extinct in 2011. This regionally extinct mountain lion is Pennsylvania State University’s official mascot, where it is referred to as the ‘Nittany Lion’. Our goal in this study was to use recent methodological advances in ancient DNA and massively parallel sequencing to reconstruct complete mitochondrial DNA (mtDNA) genomes of multiple Nittany Lions by sampling from preserved skins. This effort is part of a broader Nittany Lion Genome project intended to involve undergraduates in ancient DNA and bioinformatics research and to engage the broader Penn State community in discussions about conservation biology and extinction. Complete mtDNA genome sequences were obtained from five individuals. When compared to previously published sequences, Nittany Lions are not more similar to each other than to individuals from the Western U.S. and Florida. Supporting previous findings, North American mountain lions overall were more closely related to each other than to those from South America and had lower genetic diversity. This result emphasizes the importance of continued conservation in the Western U.S. and Florida to prevent further regional extinctions.


2021 ◽  
Author(s):  
Michael Buchalski ◽  
Benjamin Sacks ◽  
Kristen Ahrens ◽  
Kyle Gustafson ◽  
Jaime Rudd ◽  
...  

Abstract The mountain lion (Puma concolor) is one of the few remaining large predators in California, USA with density estimation from fecal genotypes becoming an essential component of conservation and management. In highly urbanized southern California, mountain lions are fragmented into small, inbred populations making proper marker selection critical for individual identification. We developed a panel of single nucleotide polymorphism (SNP) markers that can be used for consistent, routine mountain lion monitoring by different laboratories. We used a subset of existing Illumina HiSeq data for 104 individuals from throughout California to design a single, highly heterozygous multiplex of 95 SNPs for the Fluidigm platform. This panel confidently differentiates individual mountain lions, identifies sex, and discriminates mountain lions from bobcats. The panel performed well on fecal DNA extracts and based on design, had sufficient resolution to differentiate individual genotypes in even the population with lowest genetic diversity in southern California.


2009 ◽  
Vol 6 (2) ◽  
pp. 209-211 ◽  
Author(s):  
Caroline E. Krumm ◽  
Mary M. Conner ◽  
N. Thompson Hobbs ◽  
Don O. Hunter ◽  
Michael W. Miller

The possibility that predators choose prey selectively based on age or condition has been suggested but rarely tested. We examined whether mountain lions ( Puma concolor ) selectively prey upon mule deer ( Odocoileus hemionus ) infected with chronic wasting disease, a prion disease. We located kill sites of mountain lions in the northern Front Range of Colorado, USA, and compared disease prevalence among lion-killed adult (≥2 years old) deer with prevalence among sympatric deer taken by hunters in the vicinity of kill sites. Hunter-killed female deer were less likely to be infected than males (odds ratios (OR) = 0.2, 95% confidence intervals (CI) = 0.1–0.6; p = 0.015). However, both female (OR = 8.5, 95% CI = 2.3–30.9) and male deer (OR = 3.2, 95% CI = 1–10) killed by a mountain lion were more likely to be infected than same-sex deer killed in the vicinity by a hunter ( p < 0.001), suggesting that mountain lions in this area actively selected prion-infected individuals when targeting adult mule deer as prey items.


2020 ◽  
Author(s):  
JA Dellinger ◽  
B Cristescu ◽  
J Ewanyk ◽  
DJ Gammons ◽  
D Garcelon ◽  
...  

© 2019 The Wildlife Society Wildlife agencies are generally tasked with managing and conserving species at state and local levels simultaneously. Thus, it is necessary for wildlife agencies to understand basic ecological processes of a given species at multiple scales to aid decision making at commensurately varied spatial and behavioral scales. Mountain lions (Puma concolor) occur throughout California, USA, and are at the center of a variety of management and conservation issues. For example, they are genetically and demographically at risk in 1 region yet apparently stable and negatively affecting endangered species in another. Currently, no formal plan exists for mountain lions in California to deal with these diverse scenarios involving issues of local mountain lion population viability and problems related to predation of endangered species. To facilitate development of a state-wide management and conservation plan, we quantified habitat selection by mountain lions at 2 spatial scales across the range of environmental conditions in which the species is found in California. Our analyses used location data from individuals (n = 263) collared across the state from 2001–2019. At the home range scale, mountain lions selected habitat to prioritize meeting energetic demands. At the within home range scale, mountain lions avoided areas of human activity. Further, our analyses revealed 165,350–170,085 km2, depending on season, of suitable mountain lion habitat in California. Fifty percent of the suitable habitat was on unprotected lands and thus vulnerable to development. These habitat selection models will help in the development of a state-wide conservation and management plan for mountain lions in California by guiding mountain lion population monitoring through time, prioritization of habitat to be conserved for maintaining demographic connectivity and gene flow, and efforts to mediate mountain lion-prey interactions. Our work and application area will help with wildlife policy and management decisions related to depredation problems at the local scale and issues of habitat connectivity at the statewide scale. © 2019 The Wildlife Society.


2014 ◽  
Vol 88 (14) ◽  
pp. 7727-7737 ◽  
Author(s):  
Justin S. Lee ◽  
Sarah N. Bevins ◽  
Laurel E. K. Serieys ◽  
Winston Vickers ◽  
Ken A. Logan ◽  
...  

ABSTRACTMountain lions (Puma concolor) throughout North and South America are infected with puma lentivirus clade B (PLVB). A second, highly divergent lentiviral clade, PLVA, infects mountain lions in southern California and Florida. Bobcats (Lynx rufus) in these two geographic regions are also infected with PLVA, and to date, this is the only strain of lentivirus identified in bobcats. We sequenced full-length PLV genomes in order to characterize the molecular evolution of PLV in bobcats and mountain lions. Low sequence homology (88% average pairwise identity) and frequent recombination (1 recombination breakpoint per 3 isolates analyzed) were observed in both clades. Viral proteins have markedly different patterns of evolution; sequence homology and negative selection were highest in Gag and Pol and lowest in Vif and Env. A total of 1.7% of sites across the PLV genome evolve under positive selection, indicating that host-imposed selection pressure is an important force shaping PLV evolution. PLVA strains are highly spatially structured, reflecting the population dynamics of their primary host, the bobcat. In contrast, the phylogeography of PLVB reflects the highly mobile mountain lion, with diverse PLVB isolates cocirculating in some areas and genetically related viruses being present in populations separated by thousands of kilometers. We conclude that PLVA and PLVB are two different viral species with distinct feline hosts and evolutionary histories.IMPORTANCEAn understanding of viral evolution in natural host populations is a fundamental goal of virology, molecular biology, and disease ecology. Here we provide a detailed analysis of puma lentivirus (PLV) evolution in two natural carnivore hosts, the bobcat and mountain lion. Our results illustrate that PLV evolution is a dynamic process that results from high rates of viral mutation/recombination and host-imposed selection pressure.


2011 ◽  
Vol 2 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Ashwin Naidu ◽  
Lindsay A. Smythe ◽  
Ron W. Thompson ◽  
Melanie Culver

Abstract Recent records of mountain lions Puma concolor and concurrent declines in desert bighorn sheep Ovis canadensis mexicana on Kofa National Wildlife Refuge in Arizona, United States, have prompted investigations to estimate the number of mountain lions occurring there. We performed noninvasive genetic analyses and identified species, individuals, and sex from scat samples collected from the Kofa and Castle Dome Mountains. From 105 scats collected, we identified a minimum of 11 individual mountain lions. These individuals consisted of six males, two females and three of unknown sex. Three of the 11 mountain lions were identified multiple times over the study period. These estimates supplement previously recorded information on mountain lions in an area where they were historically considered only transient. We demonstrate that noninvasive genetic techniques, especially when used in conjunction with camera-trap and radiocollaring methods, can provide additional and reliable information to wildlife managers, particularly on secretive species like the mountain lion.


Author(s):  
Audra A. Huffmeyer ◽  
Jeff A. Sikich ◽  
T. Winston Vickers ◽  
Seth P.D. Riley ◽  
Robert K. Wayne

Sign in / Sign up

Export Citation Format

Share Document