genome project
Recently Published Documents


TOTAL DOCUMENTS

1827
(FIVE YEARS 250)

H-INDEX

63
(FIVE YEARS 6)

Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 121
Author(s):  
Kristyna Kolarikova ◽  
Radek Vodicka ◽  
Radek Vrtel ◽  
Julia Stellmachova ◽  
Martin Prochazka ◽  
...  

Parkinson’s disease and parkinsonism are relatively common neurodegenerative disorders. This study aimed to assess potential genetic risk factors of haplotypes in genes associated with parkinsonism in a population in which endemic parkinsonism and atypical parkinsonism have recently been found. The genes ADH1C, EIF4G1, FBXO7, GBA, GIGYF2, HTRA2, LRRK2, MAPT, PARK2, PARK7, PINK1 PLA2G6, SNCA, UCHL1, and VPS35 were analyzed in 62 patients (P) and 69 age-matched controls from the researched area (C1). Variants were acquired by high-throughput sequencing using Ion Torrent workflow. As another set of controls, the whole genome sequencing data from 100 healthy non-related individuals from the Czech population were used (C2); the results were also compared with the Genome Project data (C3). We observed shared findings of four intron (rs11564187, rs36220738, rs200829235, and rs3789329) and one exon variant (rs33995883) in the LRRK2 gene in six patients. A comparison of the C1–C3 groups revealed significant differences in haplotype frequencies between ratio of 2.09 for C1, 1.65 for C2, and 6.3 for C3, and odds ratios of 13.15 for C1, 2.58 for C2, and 7.6 for C3 were estimated. The co-occurrence of five variants in the LRRK2 gene (very probably in haplotype) could be an important potential risk factor for the development of parkinsonism, even outside the recently described pedigrees in the researched area where endemic parkinsonism is present.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Wang ◽  
Chun Liang

AbstractThe dysregulation of transposable elements (TEs) has been explored in a variety of cancers. However, TE activities in osteosarcoma (OS) have not been extensively studied yet. By integrative analysis of RNA-seq, whole-genome sequencing (WGS), and methylation data, we showed aberrant TE activities associated with dysregulations of TEs in OS tumors. Specifically, expression levels of LINE-1 and Alu of different evolutionary ages, as well as subfamilies of SVA and HERV-K, were significantly up-regulated in OS tumors, accompanied by enhanced DNA repair responses. We verified the characteristics of LINE-1 mediated TE insertions, including target site duplication (TSD) length (centered around 15 bp) and preferential insertions into intergenic and AT-rich regions as well as intronic regions of longer genes. By filtering polymorphic TE insertions reported in 1000 genome project (1KGP), besides 148 tumor-specific somatic TE insertions, we found most OS patient-specific TE insertions (3175 out of 3326) are germline insertions, which are associated with genes involved in neuronal processes or with transcription factors important for cancer development. In addition to 68 TE-affected cancer genes, we found recurrent germline TE insertions in 72 non-cancer genes with high frequencies among patients. We also found that +/− 500 bps flanking regions of transcription start sites (TSS) of LINE-1 (young) and Alu showed lower methylation levels in OS tumor samples than controls. Interestingly, by incorporating patient clinical data and focusing on TE activities in OS tumors, our data analysis suggested that higher TE insertions in OS tumors are associated with a longer event-free survival time.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Xiong Yuan ◽  
Zirong Li ◽  
Liwen Xiong ◽  
Sufeng Song ◽  
Xingfei Zheng ◽  
...  

Abstract Background Plant variety identification is the one most important of agricultural systems. Development of DNA marker profiles of released varieties to compare with candidate variety or future variety is required. However, strictly speaking, scientists did not use most existing variety identification techniques for “identification” but for “distinction of a limited number of cultivars,” of which generalization ability always not be well estimated. Because many varieties have similar genetic backgrounds, even some essentially derived varieties (EDVs) are involved, which brings difficulties for identification and breeding progress. A fast, accurate variety identification method, which also has good performance on EDV determination, needs to be developed. Results In this study, with the strategy of “Divide and Conquer,” a variety identification method Conditional Random Selection (CRS) method based on SNP of the whole genome of 3024 rice varieties was developed and be applied in essentially derived variety (EDV) identification of rice. CRS is a fast, efficient, and automated variety identification method. Meanwhile, in practical, with the optimal threshold of identity score searched in this study, the set of SNP (including 390 SNPs) showed optimal performance on EDV and non-EDV identification in two independent testing datasets. Conclusion This approach first selected a minimal set of SNPs to discriminate non-EDVs in the 3000 Rice Genome Project, then united several simplified SNP sets to improve its generalization ability for EDV and non-EDV identification in testing datasets. The results suggested that the CRS method outperformed traditional feature selection methods. Furthermore, it provides a new way to screen out core SNP loci from the whole genome for DNA fingerprinting of crop varieties and be useful for crop breeding.


Author(s):  
Evan J. Giangrande ◽  
Ramona S. Weber ◽  
Eric Turkheimer

In the second half of the twentieth century, twin and family studies established beyond a reasonable doubt that all forms of psychopathology are substantially heritable and highly polygenic. These conclusions were simultaneously an important theoretical advance and a difficult methodological obstacle, as it became clear that heritability is universal and undifferentiated across forms of psychopathology, and the radical polygenicity of genetic effects limits the biological insight provided by genetically informed studies at the phenotypic level. The paradigm-shifting revolution brought on by the Human Genome Project has recapitulated the great methodological promise and the profound theoretical difficulties of the twin study era. We review these issues using the rubric of genetic architecture, which we define as a search for specific genetic insight that adds to the general conclusion that psychopathology is heritable and polygenic. Although significant problems remain, we see many promising avenues for progress. Expected final online publication date for the Annual Review of Clinical Psychology, Volume 18 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Vinh Hoa Pham ◽  
Van Lam Nguyen ◽  
Hye-Eun Jung ◽  
Yong-Soon Cho ◽  
Jae-Gook Shin

Abstract Background Few studies have annotated the whole mitochondrial DNA (mtDNA) genome associated with drug responses in Asian populations. This study aimed to characterize mtDNA genetic profiles, especially the distribution and frequency of well-known genetic biomarkers associated with diseases and drug-induced toxicity in a Korean population. Method Whole mitochondrial genome was sequenced for 118 Korean subjects by using a next-generation sequencing approach. The bioinformatic pipeline was constructed for variant calling, haplogroup classification and annotation of mitochondrial mutation. Results A total of 681 variants was identified among all subjects. The MT-TRNP gene and displacement loop showed the highest numbers of variants (113 and 74 variants, respectively). The m.16189T > C allele, which is known to reduce the mtDNA copy number in human cells was detected in 25.4% of subjects. The variants (m.2706A > G, m.3010A > G, and m.1095T > C), which are associated with drug-induced toxicity, were observed with the frequency of 99.15%, 30.51%, and 0.08%, respectively. The m.2150T > A, a genotype associated with highly disruptive effects on mitochondrial ribosomes, was identified in five subjects. The D and M groups were the most dominant groups with the frequency of 34.74% and 16.1%, respectively. Conclusions Our finding was consistent with Korean Genome Project and well reflected the unique profile of mitochondrial haplogroup distribution. It was the first study to annotate the whole mitochondrial genome with drug-induced toxicity to predict the ADRs event in clinical implementation for Korean subjects. This approach could be extended for further study for validation of the potential ethnic-specific mitochondrial genetic biomarkers in the Korean population.


2022 ◽  
Vol 43 (2) ◽  
pp. 147-149
Author(s):  
Dong-Dong Wu ◽  
◽  
Xiao-Guang Qi ◽  
Li Yu ◽  
Ming Li ◽  
...  

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Julie Heng ◽  
Henry H. Heng

The year 2021 marks the 50th anniversary of the National Cancer Act, signed by President Nixon, which declared a national “war on cancer.” Powered by enormous financial support, this past half-century has witnessed remarkable progress in understanding the individual molecular mechanisms of cancer, primarily through the characterization of cancer genes and the phenotypes associated with their pathways. Despite millions of publications and the overwhelming volume data generated from the Cancer Genome Project, clinical benefits are still lacking. In fact, the massive, diverse data also unexpectedly challenge the current somatic gene mutation theory of cancer, as well as the initial rationales behind sequencing so many cancer samples. Therefore, what should we do next? Should we continue to sequence more samples and push for further molecular characterizations, or should we take a moment to pause and think about the biological meaning of the data we have, integrating new ideas in cancer biology? On this special anniversary, we implore that it is time for the latter. We review the Genome Architecture Theory, an alternative conceptual framework that departs from gene-based theories. Specifically, we discuss the relationship between genes, genomes, and information-based platforms for future cancer research. This discussion will reinforce some newly proposed concepts that are essential for advancing cancer research, including two-phased cancer evolution (which reconciles evolutionary contributions from karyotypes and genes), stress-induced genome chaos (which creates new system information essential for macroevolution), the evolutionary mechanism of cancer (which unifies diverse molecular mechanisms to create new karyotype coding during evolution), and cellular adaptation and cancer emergence (which explains why cancer exists in the first place). We hope that these ideas will usher in new genomic and evolutionary conceptual frameworks and strategies for the next 50 years of cancer research.


2021 ◽  
Vol 23 (1) ◽  
pp. 310
Author(s):  
Chiara Scapoli ◽  
Nicole Ziliotto ◽  
Barbara Lunghi ◽  
Erica Menegatti ◽  
Fabrizio Salvi ◽  
...  

Aiming at exploring vascular components in multiple sclerosis (MS) with brain outflow disturbance, we combined transcriptome analysis in MS internal jugular vein (IJV) wall with WES in MS families with vertical transmission of disease. Main results were the differential expression in IJV wall of 16 MS-GWAS genes and of seven genes (GRIN2A, GRIN2B, IL20RB, IL26, PER3, PITX2, and PPARGC1A) not previously indicated by GWAS but encoding for proteins functionally interacting with MS candidate gene products. Strikingly, 22/23 genes have been previously associated with vascular or neuronal traits/diseases, nine encoded for transcriptional factors/regulators and six (CAMK2G, GRIN2A, GRIN2B, N1RD1, PER3, PPARGC1A) for circadian entrainment/rhythm components. Among the WES low-frequency (MAF ≤ 0.04) SNPs (n = 7) filtered in the 16 genes, the NR1D1 rs17616365 showed significantly different MAF in the Network for Italian Genomes affected cohort than in the 1000 Genome Project Tuscany samples. This pattern was also detected in five nonintronic variants (GRIN2B rs1805482, PER3 rs2640909, PPARGC1A rs2970847, rs8192678, and rs3755863) in genes coding for functional partners. Overall, the study proposes specific markers and low-frequency variants that might help (i) to understand perturbed biological processes in vascular tissues contributing to MS disease, and (ii) to characterize MS susceptibility genes for functional association with disease-pathways.


2021 ◽  
Author(s):  
Quan Sun ◽  
Weifang Liu ◽  
Jonathan D Rosen ◽  
Le Huang ◽  
Rhonda G Pace ◽  
...  

Cystic fibrosis (CF) is a severe genetic disorder that can cause multiple comorbidities affecting the lungs, the pancreas, the luminal digestive system and beyond. In our previous genome-wide association studies (GWAS), we genotyped ~8,000 CF samples using a mixture of different genotyping platforms. More recently, the Cystic Fibrosis Genome Project (CFGP) performed deep (~30x) whole genome sequencing (WGS) of 5,095 samples to better understand the genetic mechanisms underlying clinical heterogeneity among CF patients. For mixtures of GWAS array and WGS data, genotype imputation has proven effective in increasing effective sample size. Therefore, we first performed imputation for the ~8,000 CF samples with GWAS array genotype using the TOPMed freeze 8 reference panel. Our results demonstrate that TOPMed can provide high-quality imputation for CF patients, boosting genomic coverage from ~0.3 - 4.2 million genotyped markers to ~11 - 43 million well-imputed markers, and significantly improving Polygenic Risk Score (PRS) prediction accuracy. Furthermore, we built a CF-specific CFGP reference panel based on WGS data of CF patients. We demonstrate that despite having ~3% the sample size of TOPMed, our CFGP reference panel can still outperform TOPMed when imputing some CF disease-causing variants, likely due to allele and haplotype differences between CF patients and general populations. We anticipate our imputed data for 4,656 samples without WGS data will benefit our subsequent genetic association studies, and the CFGP reference panel built from CF WGS samples will benefit other investigators studying CF.


Sign in / Sign up

Export Citation Format

Share Document