scholarly journals Edge bipartiteness and signless Laplacian spread of graphs

2012 ◽  
Vol 6 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Yi-Zheng Fan ◽  
Shaun Fallat

Let G be a connected graph, and let ?b(G) and SQ(G) be the edge bipartiteness and the signless Laplacian spread of G, respectively. We establish some important relationships between ?b(G) and SQ(G), and prove SQ(G)?2 (1+cos?/n) with equality if and only if G = Pn or G = Cn in case of odd n. In addition, we show that if G?Pn or G?C2k+1; then SQ(G)?4; with equality if and only if G is one of the following graphs: K1,3, K4, two triangles connected by an edge, and Cn for even n. As a consequence, we prove a conjecture of Cvetkovic, Rowlinson and Simic on minimal signless Laplacian spread [Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math. (Beograd), 81(95)(2007), 11-27].

Author(s):  
Dragos Cvetkovic ◽  
Peter Rowlinson ◽  
Slobodan Simic

We extend our previous survey of properties of spectra of signless Laplacians of graphs. Some new bounds for eigenvalues are given, and the main result concerns the graphs whose largest eigenvalue is maximal among the graphs with fixed numbers of vertices and edges. The results are presented in the context of a number of computer-generated conjectures.


2017 ◽  
Vol 32 ◽  
pp. 438-446 ◽  
Author(s):  
Dan Li ◽  
Guoping Wang ◽  
Jixiang Meng

Let \eta(G) denote the distance signless Laplacian spectral radius of a connected graph G. In this paper,bounds for the distance signless Laplacian spectral radius of connected graphs are given, and the extremal graph with the minimal distance signless Laplacian spectral radius among the graphs with given vertex connectivity and minimum degree is determined. Furthermore, the digraph that minimizes the distance signless Laplacian spectral radius with given vertex connectivity is characterized.


2021 ◽  
Vol 37 ◽  
pp. 709-717
Author(s):  
Mustapha Aouchiche ◽  
Bilal A. Rather ◽  
Issmail El Hallaoui

For a simple connected graph $G$, let $D(G)$, $Tr(G)$, $D^{L}(G)=Tr(G)-D(G)$, and $D^{Q}(G)=Tr(G)+D(G)$ be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of $G$, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of $ D(G) $ and $ D^{Q}(G) $ lie in the smallest Ger\v{s}gorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.


2009 ◽  
Vol 85 (99) ◽  
pp. 35-38 ◽  
Author(s):  
Lihua Feng ◽  
Guihai Yu

We study the signless Laplacian spectral radius of graphs and prove three conjectures of Cvetkovic, Rowlinson, and Simic [Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math., Nouv. S?r. 81(95) (2007), 11-27].


2018 ◽  
Vol 34 ◽  
pp. 459-471 ◽  
Author(s):  
Shuting Liu ◽  
Jinlong Shu ◽  
Jie Xue

Let $G=(V(G),E(G))$ be a $k$-connected graph with $n$ vertices and $m$ edges. Let $D(G)$ be the distance matrix of $G$. Suppose $\lambda_1(D)\geq \cdots \geq \lambda_n(D)$ are the $D$-eigenvalues of $G$. The transmission of $v_i \in V(G)$, denoted by $Tr_G(v_i)$ is defined to be the sum of distances from $v_i$ to all other vertices of $G$, i.e., the row sum $D_{i}(G)$ of $D(G)$ indexed by vertex $v_i$ and suppose that $D_1(G)\geq \cdots \geq D_n(G)$. The $Wiener~ index$ of $G$ denoted by $W(G)$ is given by $W(G)=\frac{1}{2}\sum_{i=1}^{n}D_i(G)$. Let $Tr(G)$ be the $n\times n$ diagonal matrix with its $(i,i)$-entry equal to $TrG(v_i)$. The distance signless Laplacian matrix of $G$ is defined as $D^Q(G)=Tr(G)+D(G)$ and its spectral radius is denoted by $\rho_1(D^Q(G))$ or $\rho_1$. A connected graph $G$ is said to be $t$-transmission-regular if $Tr_G(v_i) =t$ for every vertex $v_i\in V(G)$, otherwise, non-transmission-regular. In this paper, we respectively estimate $D_1(G)-\lambda_1(G)$ and $2D_1(G)-\rho_1(G)$ for a $k$-connected non-transmission-regular graph in different ways and compare these obtained results. And we conjecture that $D_1(G)-\lambda_1(G)>\frac{1}{n+1}$. Moreover, we show that the conjecture is valid for trees.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 869
Author(s):  
Chunxiang Wang ◽  
Shaohui Wang ◽  
Jia-Bao Liu ◽  
Bing Wei

Let A ( G ) be the adjacent matrix and D ( G ) the diagonal matrix of the degrees of a graph G, respectively. For 0 ≤ α ≤ 1 , the A α -matrix is the general adjacency and signless Laplacian spectral matrix having the form of A α ( G ) = α D ( G ) + ( 1 − α ) A ( G ) . Clearly, A 0 ( G ) is the adjacent matrix and 2 A 1 2 is the signless Laplacian matrix. A cactus is a connected graph such that any two of its cycles have at most one common vertex, that is an extension of the tree. The A α -spectral radius of a cactus graph with n vertices and k cycles is explored. The outcomes obtained in this paper can imply some previous bounds from trees to cacti. In addition, the corresponding extremal graphs are determined. Furthermore, we proposed all eigenvalues of such extremal cacti. Our results extended and enriched previous known results.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050006 ◽  
Author(s):  
A. Alhevaz ◽  
M. Baghipur ◽  
E. Hashemi ◽  
S. Paul

The distance signless Laplacian matrix of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. If [Formula: see text] are the distance signless Laplacian eigenvalues of a simple graph [Formula: see text] of order [Formula: see text] then we put forward the graph invariants [Formula: see text] and [Formula: see text] for the sum of [Formula: see text]-largest and the sum of [Formula: see text]-smallest distance signless Laplacian eigenvalues of a graph [Formula: see text], respectively. We obtain lower bounds for the invariants [Formula: see text] and [Formula: see text]. Then, we present some inequalities between the vertex transmissions, distance eigenvalues, distance Laplacian eigenvalues, and distance signless Laplacian eigenvalues of graphs. Finally, we give some new results and bounds for the distance signless Laplacian energy of graphs.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850066 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Ebrahim Hashemi

The distance signless Laplacian matrix [Formula: see text] of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix whose main entries are the vertex transmissions of [Formula: see text], and the spectral radius of a connected graph [Formula: see text] is the largest eigenvalue of [Formula: see text]. In this paper, first we obtain the [Formula: see text]-eigenvalues of the join of certain regular graphs. Next, we give some new bounds on the distance signless Laplacian spectral radius of a graph [Formula: see text] in terms of graph parameters and characterize the extremal graphs. Utilizing these results we present some upper and lower bounds on the distance signless Laplacian energy of a graph [Formula: see text].


2021 ◽  
Vol 45 (02) ◽  
pp. 299-307
Author(s):  
HANYUAN DENG ◽  
TOMÁŠ VETRÍK ◽  
SELVARAJ BALACHANDRAN

The harmonic index of a conected graph G is defined as H(G) = ∑ uv∈E(G) 2 d(u)+d-(v), where E(G) is the edge set of G, d(u) and d(v) are the degrees of vertices u and v, respectively. The spectral radius of a square matrix M is the maximum among the absolute values of the eigenvalues of M. Let q(G) be the spectral radius of the signless Laplacian matrix Q(G) = D(G) + A(G), where D(G) is the diagonal matrix having degrees of the vertices on the main diagonal and A(G) is the (0, 1) adjacency matrix of G. The harmonic index of a graph G and the spectral radius of the matrix Q(G) have been extensively studied. We investigate the relationship between the harmonic index of a graph G and the spectral radius of the matrix Q(G). We prove that for a connected graph G with n vertices, we have ( 2 || ----n----- ||{ 2 (n − 1), if n ≥ 6, -q(G-)- ≤ | 16-, if n = 5, H (G ) || 5 |( 3, if n = 4, and the bounds are best possible.


Sign in / Sign up

Export Citation Format

Share Document