scholarly journals On the solutions of a class of max-min-type difference equation system

2019 ◽  
Vol 13 (1) ◽  
pp. 165-177
Author(s):  
Huili Ma ◽  
Haixia Wang

We mainly investigate the general solutions and periodic solutions to the following system of max-type difference equations xn+1 = max{y2n-1, An/yn-1}, yn+1 = min{x2n-1,Bn/xn-1}, where n ? N, (An)n?N and (Bn)n?N are positive real sequences, and the initial values x-1 = ?, x0= ?; y-1= ?, y0 = ? are real numbers.

Author(s):  
Sk Sarif Hassan ◽  
Soma Mondal ◽  
Swagata Mandal ◽  
Chumki Sau

The asymptotic dynamics of the classes of rational difference equations (RDEs) of third order defined over the positive real-line as $$\displaystyle{x_{n+1}=\frac{x_{n}}{ax_n+bx_{n-1}+cx_{n-2}}}, \displaystyle{x_{n+1}=\frac{x_{n-1}}{ax_n+bx_{n-1}+cx_{n-2}}}, \displaystyle{x_{n+1}=\frac{x_{n-2}}{ax_n+bx_{n-1}+cx_{n-2}}}$$ and $$\displaystyle{x_{n+1}=\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n}}}, \displaystyle{x_{n+1}=\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n-1}}}, \displaystyle{x_{n+1}=\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n-2}}}$$ is investigated computationally with theoretical discussions and examples. It is noted that all the parameters $a, b, c$ and the initial values $x_{-2}, x_{-1}$ and $x_0$ are all positive real numbers such that the denominator is always positive. Several periodic solutions with high periods of the RDEs as well as their inter-intra dynamical behaviours are studied.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Hui-li Ma ◽  
Hui Feng

Our aim in this paper is to investigate the behavior of positive solutions for the following systems of rational difference equations: xn+1=A/xnyn2, and yn+1=Byn/xn-1yn-1, n=0,1,…, where x-1, x0, y-1, and y0 are positive real numbers and A and B are positive constants.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Mehmet Gümüş ◽  
Yüksel Soykan

The aim of this paper is to study the dynamical behavior of positive solutions for a system of rational difference equations of the following form:un+1=αun-1/β+γvn-2p,vn+1=α1vn-1/β1+γ1un-2p,n=0,1,…, where the parametersα,β,γ,α1,β1,γ1,pand the initial valuesu-i,v-ifori=0,1,2are positive real numbers.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Durhasan Turgut Tollu

This paper is dealt with the following system of difference equations x n + 1 = a n / x n + b n / y n , y n + 1 = c n / x n + d n / y n , where n ∈ ℕ 0 = ℕ ∪ 0 , the initial values x 0   and   y 0 are the positive real numbers, and the sequences a n n ≥ 0 , b n n ≥ 0 , c n n ≥ 0 , and d n n ≥ 0 are two-periodic and positive. The system is an extension of a system where every positive solution is two-periodic or converges to a two-periodic solution. Here, the long-term behavior of positive solutions of the system is examined by using a new method to solve the system.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Chang-you Wang ◽  
Shu Wang ◽  
Zhi-wei Wang ◽  
Fei Gong ◽  
Rui-fang Wang

We study the global asymptotic stability of the equilibrium point for the fractional difference equationxn+1=(axn-lxn-k)/(α+bxn-s+cxn-t),n=0,1,…, where the initial conditionsx-r,x-r+1,…,x1,x0are arbitrary positive real numbers of the interval(0,α/2a),l,k,s,tare nonnegative integers,r=max⁡⁡{l,k,s,t}andα,a,b,care positive constants. Moreover, some numerical simulations are given to illustrate our results.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
İbrahim Yalçinkaya

We investigate the global behaviour of the difference equation of higher order , where the parameters and the initial values and are arbitrary positive real numbers.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 461-477 ◽  
Author(s):  
Stevo Stevic ◽  
Mohammed Alghamdi ◽  
Abdullah Alotaibi ◽  
Elsayed Elsayed

Closed form formulas for well-defined solutions of the next difference equation xn = xn-2xn-k-2/xn-k(an + bnxn-2xn-k-2), n ? N0, where k ? N, (an)n?N0, (bn)n?N0, and initial values x-i, i = 1,k+2 are real numbers, are given. Long-term behavior of well-defined solutions of the equation when (an)n?N0 and (bn)n?N0 are constant sequences is described in detail by using the formulas. We also describe the domain of undefinable solutions of the equation. Our results explain and considerably improve some recent results in the literature.


2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Dağistan Simsek ◽  
Bilal Demir ◽  
Cengiz Cinar

We study the behavior of the solutions of the following system of difference equationsxn+1=max⁡{A/xn,yn/xn},yn+1=max⁡{A/yn,xn/yn}where the constantAand the initial conditions are positive real numbers.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


Sign in / Sign up

Export Citation Format

Share Document